Transport properties of vertical heterostructures under light irradiation
Journal article, 2022

Electronic and transport properties of bilayer heterostructure under light irradiation are of fundamental interest to improve functionality of optoelectronic devices. We theoretically study the modification of transport properties of bilayer graphene and bilayer heterostructures under a time-periodic external light field. The bulk electronic and transport properties are studied in a Landauer-type configuration by using the nonequilibrium Green's function formalism. To illustrate the behavior of the differential conductance of a bilayer contact under light illumination, we consider tight-binding models of bilayer graphene and graphene/hexagonal boron-nitride heterostructures. The nonadiabatic driving induces sidebands of the original band structure and opening of gaps in the quasienergy spectrum. In transport properties, the gap openings are manifested in a suppression of the differential conductance. In addition to suppression, an external light field induces an enhancement of the differential conductance if photoexcited electrons tunnel into or out of a Van Hove singularity.

Author

Pascal Stadler

2D-Tech

Chalmers, Microtechnology and Nanoscience (MC2), Applied Quantum Physics

Mikael Fogelström

Chalmers, Microtechnology and Nanoscience (MC2)

2D-Tech

Physical Review B

24699950 (ISSN) 24699969 (eISSN)

Vol. 106 8 085409

2D material-based technology for industrial applications (2D-TECH)

VINNOVA (2019-00068), 2020-05-01 -- 2024-12-31.

GKN Aerospace Sweden (2D-tech), 2021-01-01 -- 2024-12-31.

Subject Categories

Other Physics Topics

Condensed Matter Physics

DOI

10.1103/PhysRevB.106.085409

More information

Latest update

2/29/2024