Fouling characteristics of microcrystalline cellulose during cross-flow microfiltration: Insights from fluid dynamic gauging and molecular dynamics simulations
Journal article, 2023

The fouling behaviour of microcrystalline cellulose (MCC) particles on polyethersulfone (PES) membranes was investigated using fluid dynamic gauging (FDG) and molecular dynamics (MD) simulations. Experimental cross-flow microfiltration (MF) of a dilute MCC suspension at 400 mbar transmembrane pressure using 0.45 μm PES membranes revealed an estimated fouling layer thickness of 616 ± 5 μm for both fouled and re-fouled membranes at an applied shear stress of 37 ± 2 Pa. A decline in pure water flux was observed after each membrane cleaning and flushing procedure, indicating that highly resilient layers were formed close to the membrane surface. A possible explanation for the formation of resilient cellulose layers was obtained through MD simulations of the free energy profiles, which predicted deep energy minima at close interparticle separations of the cellulose–cellulose and cellulose–PES systems. The consequence of this energy minima is that attractive and repulsive forces are in balance at a specific distance between the particles, suggesting high binding energy at close interparticle distances. This implies that a certain force is needed to remove the layer or redisperse the cellulose particles. MD simulations also suggested that contributions made by repulsive hydration forces negatively influenced the adsorption of cellulose particles onto the PES membrane. These results highlight how experimental FDG measurements, when complemented with MD simulations, can provide insights into the fouling behaviour of an organic model material during cross-flow filtration.

Membrane fouling

Fluid dynamic gauging

Free energy

Microcrystalline cellulose

Molecular dynamics

Author

Kenneth Gacutno Arandia

Chalmers, Chemistry and Chemical Engineering, Chemical Technology

Nabin Kumar Karna

Chalmers, Chemistry and Chemical Engineering, Chemical Technology

Tuve Mattsson

Chalmers, Chemistry and Chemical Engineering, Chemical Technology

Anette Larsson

Chalmers, Chemistry and Chemical Engineering, Applied Chemistry

Hans Theliander

Chalmers, Chemistry and Chemical Engineering, Chemical Technology

Journal of Membrane Science

0376-7388 (ISSN) 18733123 (eISSN)

Vol. 669 121272

Subject Categories

Food Engineering

Biophysics

Fluid Mechanics and Acoustics

DOI

10.1016/j.memsci.2022.121272

More information

Latest update

1/9/2023 2