Light-driven transport of microparticles with phase-gradient metasurfaces
Journal article, 2022

Optical tweezers have opened numerous possibilities for precise control of microscopic particles for applications in life science and soft matter research and technology. However, traditional optical tweezers employ bulky conventional optics that prevents construction of compact optical manipulation systems. As an alternative, we present an ultra -thin silicon-based metasurface that enables simultaneous confinement and propulsion of microparticles based on a combination of intensity and phase-gradient optical forces. The metasurface is constructed as a water-immersion line -focusing element that enables trapping and transport of 2 mu m particles over a wide area within a thin liquid cell. We envisage that the type of multifunctional metasurfaces reported herein will play a central role in miniaturized optical sensing, driving, and sorting of microscopic objects, such as cells or other biological entities. (C) 2022 Optica Publishing Group

Author

Mohammad Mahdi Shanei

Chalmers, Physics, Nano and Biophysics

Einstom Engay

Chalmers, Physics, Nano and Biophysics

Mikael Käll

Chalmers, Physics, Nano and Biophysics

Optics Letters

0146-9592 (ISSN) 1539-4794 (eISSN)

Vol. 47 24 6428-6431

Subject Categories

Atom and Molecular Physics and Optics

Other Physics Topics

Biomedical Laboratory Science/Technology

DOI

10.1364/OL.478179

PubMed

36538466

More information

Latest update

1/20/2023