SPLITTING INTEGRATORS FOR STOCHASTIC LIE-POISSON SYSTEMS
Journal article, 2023

We study stochastic Poisson integrators for a class of stochastic Poisson systems driven by Stratonovich noise. Such geometric integrators preserve Casimir functions and the Poisson map property. For this purpose, we propose explicit stochastic Poisson integrators based on a splitting strategy, and analyse their qualitative and quantitative properties: preservation of Casimir functions, existence of almost sure or moment bounds, asymptotic preserving property, and strong and weak rates of convergence. The construction of the schemes and the theoretical results are illustrated through extensive numerical experiments for three examples of stochastic Lie-Poisson systems, namely: stochastically perturbed Maxwell-Bloch, rigid body and sine-Euler equations.

sine-Euler equations

rigid body equations

splitting schemes

strong and weak rates of convergence

Maxwell-Bloch equations

Poisson integrators

Stochastic Poisson systems

asymptotic preserving schemes

Author

Charles-Edouard Brehier

Universite de Pau et des Pays de L'Adour

David Cohen

University of Gothenburg

Chalmers, Mathematical Sciences, Applied Mathematics and Statistics

Tobias Jahnke

Karlsruhe Institute of Technology (KIT)

Published in

Mathematics of Computation

0025-5718 (ISSN) 1088-6842 (eISSN)

Vol. 92Issue 343p. 2167-2216

Categorizing

Subject Categories

Mathematical Analysis

Identifiers

DOI

10.1090/mcom/3829

More information

Latest update

6/2/2023 7