Splitting integrators for stochastic Lie-Poisson systems
Artikel i vetenskaplig tidskrift, 2023

We study stochastic Poisson integrators for a class of stochastic Poisson systems driven by Stratonovich noise. Such geometric integrators preserve Casimir functions and the Poisson map property. For this purpose, we propose explicit stochastic Poisson integrators based on a splitting strategy, and analyse their qualitative and quantitative properties: preservation of Casimir functions, existence of almost sure or moment bounds, asymptotic preserving property, and strong and weak rates of convergence. The construction of the schemes and the theoretical results are illustrated through extensive numerical experiments for three examples of stochastic Lie-Poisson systems, namely: stochastically perturbed Maxwell-Bloch, rigid body and sine-Euler equations.

rigid body equations

strong and weak rates of convergence

Stochastic Poisson systems

splitting schemes

Maxwell-Bloch equations

sine-Euler equations

Poisson integrators

asymptotic preserving schemes

Författare

Charles-Edouard Brehier

Universite de Pau et des Pays de L'Adour

David Cohen

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Göteborgs universitet

Tobias Jahnke

Karlsruher Institut für Technologie (KIT)

Mathematics of Computation

0025-5718 (ISSN) 1088-6842 (eISSN)

Vol. 92 343 2167-2216

Ämneskategorier (SSIF 2011)

Matematisk analys

DOI

10.1090/mcom/3829

Mer information

Senast uppdaterat

2025-12-15