A Scalable, Heterogeneous Hardware Platform for Accelerated AIoT based on Microservers
Book chapter, 2023
solutions and guide hardware selection for AIoT applications from the far edge to the cloud.
performance classification.
deep learning
FPGA
microserver
accelerator
energy-efficiency
IoT
(far) edge-computing
machine learning
AIoT
Author
René Griessl
Bielefeld University
Florian Porrmann
Bielefeld University
Nils Kucza
Bielefeld University
K. Mika
Bielefeld University
Jens Hagemeyer
Bielefeld University
Martin Kaiser
Bielefeld University
Mario Porrmann
Osnabrück University
M. Tassemeier
Osnabrück University
M. Flottmann
Osnabrück University
Fareed Mohammad Qararyah
Chalmers, Computer Science and Engineering (Chalmers), Computer Engineering (Chalmers)
Muhammad Waqar Azhar
Chalmers, Computer Science and Engineering (Chalmers), Computer Engineering (Chalmers)
Pedro Petersen Moura Trancoso
Chalmers, Computer Science and Engineering (Chalmers), Computer Engineering (Chalmers)
D. Odman
EmbeDL AB
K. Gugala
ANTMICRO Ltd
G. Latosinski
ANTMICRO Ltd
Shaping the Future of IoT with Edge Intelligence How Edge Computing Enables the Next Generation of IoT Applications
179-196
9788770040273 (ISBN)
Very Efficient Deep Learning in IOT (VEDLIoT)
European Commission (EC) (EC/H2020/957197), 2020-11-01 -- 2023-10-31.
Subject Categories (SSIF 2011)
Computer and Information Science
Electrical Engineering, Electronic Engineering, Information Engineering
DOI
10.13052/rp-9788770040266