A Scalable, Heterogeneous Hardware Platform for Accelerated AIoT based on Microservers
Kapitel i bok, 2023
solutions and guide hardware selection for AIoT applications from the far edge to the cloud.
performance classification.
deep learning
FPGA
microserver
accelerator
energy-efficiency
IoT
(far) edge-computing
machine learning
AIoT
Författare
René Griessl
Universität Bielefeld
Florian Porrmann
Universität Bielefeld
Nils Kucza
Universität Bielefeld
K. Mika
Universität Bielefeld
Jens Hagemeyer
Universität Bielefeld
Martin Kaiser
Universität Bielefeld
Mario Porrmann
Universität Osnabrück
M. Tassemeier
Universität Osnabrück
M. Flottmann
Universität Osnabrück
Fareed Mohammad Qararyah
Chalmers, Data- och informationsteknik, Datorteknik
Muhammad Waqar Azhar
Chalmers, Data- och informationsteknik, Datorteknik
Pedro Petersen Moura Trancoso
Chalmers, Data- och informationsteknik, Datorteknik
D. Odman
EmbeDL AB
K. Gugala
ANTMICRO AB
G. Latosinski
ANTMICRO AB
Shaping the Future of IoT with Edge Intelligence How Edge Computing Enables the Next Generation of IoT Applications
179-196
9788770040273 (ISBN)
Very Efficient Deep Learning in IOT (VEDLIoT)
Europeiska kommissionen (EU) (EC/H2020/957197), 2020-11-01 -- 2023-10-31.
Ämneskategorier (SSIF 2011)
Data- och informationsvetenskap
Elektroteknik och elektronik
DOI
10.13052/rp-9788770040266