Analyses of long-term fungal degradation of spruce bark reveals varying potential for catabolism of polysaccharides and extractive compounds
Journal article, 2024

The bark represents the outer protective layer of trees. It contains high concentrations of antimicrobial extractives, in addition to regular wood polymers. It represents a huge underutilized side stream in forestry, but biotechnological valorization is hampered by a lack of knowledge on microbial bark degradation. Many fungi are efficient lignocellulose degraders, and here, spruce bark degradation by five species, Dichomitus squalens, Rhodonia placenta, Penicillium crustosum, Trichoderma sp. B1, and Trichoderma reesei, was mapped, by continuously analyzing chemical changes in the bark over six months. The study reveals how fungi from different phyla degrade bark using diverse strategies, regarding both wood polymers and extractives, where toxic resin acids were degraded by Basidiomycetes but unmodified/tolerated by Ascomycetes. Proteome analyses of the white-rot D. squalens revealed several proteins, with both known and unknown functions, that were specifically upregulated during growth on bark. This knowledge can accelerate improved utilization of an abundant renewable resource.

Proteomics

White-rot fungi

CAZyme

Resin acids

Author

Amanda Sörensen Ristinmaa

Chalmers, Life Sciences, Industrial Biotechnology

Ekaterina Korotkova

Åbo Akademi

Magnus Arntzen

Norwegian University of Life Sciences

Vincent G. H. Eijsink

Norwegian University of Life Sciences

C. Xu

Åbo Akademi

Anna Sundberg

Åbo Akademi

Merima Hasani

Chalmers, Chemistry and Chemical Engineering, Chemical Technology

Johan Larsbrink

Chalmers, Life Sciences, Industrial Biotechnology

Bioresource technology

09608524 (ISSN) 18732976 (eISSN)

Vol. 402 130768

Biochemical conversion of bark

Swedish Energy Agency (46559-1), 2019-04-08 -- 2023-10-31.

Subject Categories

Polymer Technologies

Forest Science

Microbiology

DOI

10.1016/j.biortech.2024.130768

PubMed

38697367

More information

Latest update

5/23/2024