Acoustic levitation for the study of soft matter on a self-standing droplet
Doctoral thesis, 2024

Contact-free studies allow the investigation of surface and interfacial phenomena without the shortcomings of surface-induced effects. In comparison to other contact-free techniques, an acoustic levitator can trap any low-volume (< 10 mm3) material in mid-air. Recent developments and findings have advanced the experimental and theoretical understanding of acoustic levitation; however, the levitation stability and capacity are often far from ideal for studying physicochemical properties of liquids. In this thesis, the designing principles of acoustic levitators were explored, allowing the customization of high-performing devices. The surface tension of acoustically levitated droplets of aqueous surfactant solutions was determined through a data-driven approach. The high stability of the developed levitator allowed the training of a deep neural network with over 50,000 high-quality photographs of droplets. The surface tension, predicted by the neural network, presented accuracy equal to or higher than that of theoretical models, which allowed the determination of the critical micelle concentration on a single droplet. Following, a study on surface freezing was conducted on binary hexadecane/water droplets, above the melting temperature of the alkane. The conditions to induce surface crystallization were explored and the solid phase was characterized in a contact-free manner by coupling Raman spectroscopy with an acoustic levitator operating horizontally. The high performance of this family of acoustic levitators also allowed the operation of a demagnetized version in a 7.05 T magnetic field, thereby granting the implementation of magnetic resonance studies on a self-standing droplet. Finally, a pH-responsive system was investigated by levitating microliter droplets and exposing them to CO2. The occurring phase transition was characterized through optical means, magnetic resonance spectroscopy, and X-ray scattering, free from surface-induced artifacts.

magnetic resonance

self standing

soft matter

droplet

surface properties

Chemistry course building, room KB
Opponent: Michael Gradzielski, Technical University of Berlin, Germany

Author

Smaragda Maria Argyri

Chalmers, Chemistry and Chemical Engineering, Applied Chemistry

Customized and high-performing acoustic levitators for contact-free experiments

Journal of Science: Advanced Materials and Devices,; Vol. 9(2024)

Journal article

Contact-free measurement of surface tension on single droplet using machine learning and acoustic levitation

Journal of Colloid and Interface Science,; Vol. 640(2023)p. 637-646

Journal article

Contact-free magnetic resonance imaging and spectroscopy with acoustic levitation

Crystallization at the hexadecane/water interface observed under acoustic levitation

Combining X-ray scattering and magnetic resonance with acoustic levitation to investigate CO2 induced phase transitions on a self-standing droplet

Att kunna isolera vätskedroppar i en volym av luft möjliggör nya studier inom ytkemin. "Vad är ytkemi?" kanske du undrar. Ytkemi syftar till läran av interaktioner som sker på ytor och vid gränsskikt; från att tvätta händerna och baka bröd till självrengörande kläder och katalytiska reaktioner, och än mer därtill. Typiskt, i ytkemi, måste ett prov placeras på en yta för att studeras vilket leder till att interaktionen mellan ytan och provet inkluderas i studien.

I vetenskapens värld, finns ett fascinerande fenomen som kallas akustisk levitation. Föreställ dig detta: en symfoni av ljudfrekvenser som får molekyler i en droppe att dansa, hållande den svävande i luften som om den trotsade tyngdlagen.  Detta är den förtrollande synen av akustisk levitation, ett fenomen som har fångat både forskarens och drömmarens fantasi. "Vilken trolldom är detta?" kanske du frågar dig. Oroa dig inte, förklaringen ligger i det harmoniska samspelet mellan ljudvågor. Föreställ dig två ljudkällor som skickar ut ohörbara vågor som korsar varandra och skapar omväxlande områden med högt och lågt tryck. Mellan två områden med högt tryck kan små föremål fångas, som gör det möjligt för oss att studera gränsskiktsfenomen utan närvaro av andra ytor eller begränsningar.

Den här avhandlingen öppnar upp för ytterligare vägar från att designa instrument för akustisk levitation till olika tillämpningar. Samtidigt, när vi fortsätter att flytta gränserna för vår förståelse, låt oss också beundra ljudvågornas imponerande kraft att lyfta oss till nya höjder av kunskap och fantasi.

Being able to isolate liquid droplets in mid-air enables new studies in surface chemistry. "What is surface chemistry?" you may ask. Surface chemistry aims at the study of interactions that occur on surfaces and at boundary layers; from washing hands, to baking bread, to self-cleaning clothes, catalytic reactions, and beyond. Typically, in surface chemistry, a sample must be placed on a surface to be studied which leads to the interaction between the surface and the sample being included in the study.

In the world of science, there is a fascinating phenomenon called acoustic levitation. Picture this: a symphony of sound frequencies causing molecules in a drop to dance, keeping it suspended in the air as if utterly defying the law of gravity. This is the enchanting sight of acoustic levitation, a phenomenon that has captured the imagination of scientists and dreamers alike. "What sorcery is this?" you may be asking yourself. Don't worry, the explanation lies in the harmonious interplay between sound waves. Imagine two sound sources sending out inaudible waves that cross each other, creating alternating areas of high and low pressure. Between two areas of high pressure, small objects can be trapped, enabling us to study interfacial phenomena without the presence of other surfaces or boundary constraints.

This thesis opens up further avenues from designing acoustic levitators to various applications. At the same time, as we continue to push the boundaries of our understanding, let us also admire the impressive power of sound waves to lift us to new heights of knowledge and imagination.

NMR-Lev: Nuclear Magnetic Resonance spectroscopy applied to Levitating material

Swedish Foundation for Strategic Research (SSF) (ITM17-0436), 2019-01-01 -- 2021-12-31.

Swedish Research Council (VR) (2018-04196), 2019-01-01 -- 2021-12-31.

Subject Categories

Physical Chemistry

Materials Chemistry

Fluid Mechanics and Acoustics

ISBN

978-91-8103-065-5

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: ISSN 0346-718X

Publisher

Chalmers

Chemistry course building, room KB

Online

Opponent: Michael Gradzielski, Technical University of Berlin, Germany

More information

Latest update

5/27/2024