Overview of ASDEX upgrade results in view of ITER and DEMO
Journal article, 2024

Experiments on ASDEX Upgrade (AUG) in 2021 and 2022 have addressed a number of critical issues for ITER and EU DEMO. A major objective of the AUG programme is to shed light on the underlying physics of confinement, stability, and plasma exhaust in order to allow reliable extrapolation of results obtained on present day machines to these reactor-grade devices. Concerning pedestal physics, the mitigation of edge localised modes (ELMs) using resonant magnetic perturbations (RMPs) was found to be consistent with a reduction of the linear peeling-ballooning stability threshold due to the helical deformation of the plasma. Conversely, ELM suppression by RMPs is ascribed to an increased pedestal transport that keeps the plasma away from this boundary. Candidates for this increased transport are locally enhanced turbulence and a locked magnetic island in the pedestal. The enhanced D-alpha (EDA) and quasi-continuous exhaust (QCE) regimes have been established as promising ELM-free scenarios. Here, the pressure gradient at the foot of the H-mode pedestal is reduced by a quasi-coherent mode, consistent with violation of the high-n ballooning mode stability limit there. This is suggestive that the EDA and QCE regimes have a common underlying physics origin. In the area of transport physics, full radius models for both L- and H-modes have been developed. These models predict energy confinement in AUG better than the commonly used global scaling laws, representing a large step towards the goal of predictive capability. A new momentum transport analysis framework has been developed that provides access to the intrinsic torque in the plasma core. In the field of exhaust, the X-Point Radiator (XPR), a cold and dense plasma region on closed flux surfaces close to the X-point, was described by an analytical model that provides an understanding of its formation as well as its stability, i.e., the conditions under which it transitions into a deleterious MARFE with the potential to result in a disruptive termination. With the XPR close to the divertor target, a new detached divertor concept, the compact radiative divertor, was developed. Here, the exhaust power is radiated before reaching the target, allowing close proximity of the X-point to the target. No limitations by the shallow field line angle due to the large flux expansion were observed, and sufficient compression of neutral density was demonstrated. With respect to the pumping of non-recycling impurities, the divertor enrichment was found to mainly depend on the ionisation energy of the impurity under consideration. In the area of MHD physics, analysis of the hot plasma core motion in sawtooth crashes showed good agreement with nonlinear 2-fluid simulations. This indicates that the fast reconnection observed in these events is adequately described including the pressure gradient and the electron inertia in the parallel Ohm’s law. Concerning disruption physics, a shattered pellet injection system was installed in collaboration with the ITER International Organisation. Thanks to the ability to vary the shard size distribution independently of the injection velocity, as well as its impurity admixture, it was possible to tailor the current quench rate, which is an important requirement for future large devices such as ITER. Progress was also made modelling the force reduction of VDEs induced by massive gas injection on AUG. The H-mode density limit was characterised in terms of safe operational space with a newly developed active feedback control method that allowed the stability boundary to be probed several times within a single discharge without inducing a disruptive termination. Regarding integrated operation scenarios, the role of density peaking in the confinement of the ITER baseline scenario (high plasma current) was clarified. The usual energy confinement scaling ITER98(p,y) does not capture this effect, but the more recent H20 scaling does, highlighting again the importance of developing adequate physics based models. Advanced tokamak scenarios, aiming at large non-inductive current fraction due to non-standard profiles of the safety factor in combination with high normalised plasma pressure were studied with a focus on their access conditions. A method to guide the approach of the targeted safety factor profiles was developed, and the conditions for achieving good confinement were clarified. Based on this, two types of advanced scenarios (‘hybrid’ and ‘elevated’ q-profile) were established on AUG and characterised concerning their plasma performance.

disruption physics

ELM free scenarios

MHD stability

radiative exhaust

tokamak

transport modelling

Author

H. Zohm

Max Planck Society

E. Alessi

Istituto Di Fisica Del Plasma Piero Caldirola, Milan

C. Angioni

Max Planck Society

N. Arden

Max Planck Society

V. Artigues

Max Planck Society

M. Astrain

Max Planck Society

O. Asunta

Aalto University

M. Balden

Max Planck Society

V. Bandaru

Max Planck Society

A. Banon-Navarro

Max Planck Society

M. Bauer

Max Planck Society

A. Bergmann

Max Planck Society

M. Bergmann

Max Planck Society

J. Bernardo

Instituto Superior Tecnico

M. Bernert

Max Planck Society

A. Biancalani

Leonardo de Vinci University Center

R. Bielajew

Massachusetts Institute of Technology (MIT)

R. Bilato

Max Planck Society

G. Birkenmeier

Max Planck Society

T.C. Blanken

Eindhoven University of Technology

V. Bobkov

Max Planck Society

A. Bock

Max Planck Society

L. Bock

Max Planck Society

T. Body

Max Planck Society

T. Bolzonella

Consorzio Rfx

N. Bonanomi

Max Planck Society

A. Bortolon

Princeton University

B. Böswirth

Max Planck Society

C. Bottereau

The French Alternative Energies and Atomic Energy Commission (CEA)

A. Bottino

Max Planck Society

H. Van Den Brand

Eindhoven University of Technology

M. Brenzke

Forschungszentrum Jülich

S. Brezinsek

Forschungszentrum Jülich

Daniele Brida

Max Planck Society

F. Brochard

Institut Jean Lamour

J. Buchanan

Culham Science Centre

A. Buhler

Max Planck Society

A. Burckhart

Max Planck Society

Y. Camenen

Aix Marseille University

B. Cannas

University of Cagliari

P. Cano Megías

Max Planck Society

D. Carlton

Max Planck Society

M. Carr

Culham Science Centre

P. Carvalho

Instituto Superior Tecnico

C. Castaldo

ENEA

A. Castillo Castillo

Max Planck Society

A. Cathey

Max Planck Society

M. Cavedon

University of Milano-Bicocca

C. Cazzaniga

Consorzio Rfx

C. Challis

Culham Science Centre

A. V. Chankin

Max Planck Society

A. Chomiczewska

Institute of Plasma Physics & Laser Microfusion (IPPLM)

C. Cianfarani

ENEA

F. Clairet

The French Alternative Energies and Atomic Energy Commission (CEA)

S. Coda

Swiss Federal Institute of Technology in Lausanne (EPFL)

R. Coelho

Instituto Superior Tecnico

J.W. Coenen

Forschungszentrum Jülich

L. Colas

The French Alternative Energies and Atomic Energy Commission (CEA)

G.D. Conway

Max Planck Society

S. Costea

University of Innsbruck

D. Coster

Max Planck Society

T.B. Cote

University of Wisconsin Madison

A. Creely

Massachusetts Institute of Technology (MIT)

G. Croci

Istituto Di Fisica Del Plasma Piero Caldirola, Milan

D.J. Cruz Zabala

University of Seville

G. Cseh

Centre for Energy Research

I. Cziegler

University of York

O. D’Arcangelo

ENEA Consorzio CREATE

A. Dal Molin

University of Milano-Bicocca

P. David

Max Planck Society

C. Day

Karlsruhe Institute of Technology (KIT)

M. De Baar

Eindhoven University of Technology

P. De Marné

Max Planck Society

R. Delogu

Consorzio Rfx

P. Denner

Forschungszentrum Jülich

A. Di Siena

Max Planck Society

M. Dibon

Max Planck Society

J. Dominguez-Palacios Durán

University of Seville

Dániel Dunai

Centre for Energy Research

M. Dreval

National Science Center

M. Dunne

Max Planck Society

B. Duval

Swiss Federal Institute of Technology in Lausanne (EPFL)

R. Dux

Max Planck Society

T. Eich

Max Planck Society

S. Elgeti

Max Planck Society

A. Encheva

ITER Organization

B. Esposito

ENEA

E. Fable

Max Planck Society

M. Faitsch

Max Planck Society

D. Fajardo Jimenez

Max Planck Society

U. Fantz

Max Planck Society

M. Farnik

Czech Academy of Sciences

H. Faugel

Max Planck Society

F Felici

Swiss Federal Institute of Technology in Lausanne (EPFL)

O. Ficker

Czech Academy of Sciences

A. Figueredo

Instituto Superior Tecnico

R. Fischer

Max Planck Society

O. Ford

Max Planck Society

L. Frassinetti

Royal Institute of Technology (KTH)

M. Fröschle

Max Planck Society

G. Fuchert

Max Planck Society

J.C. Fuchs

Max Planck Society

H. Fünfgelder

Max Planck Society

S. Futatani

Centro Nacional de Supercomputacion

K. Galazka

Institute of Plasma Physics & Laser Microfusion (IPPLM)

J. Galdon-Quiroga

University of Seville

D. Gallart Escolà

Centro Nacional de Supercomputacion

A. Gallo

The French Alternative Energies and Atomic Energy Commission (CEA)

Y. Gao

Forschungszentrum Jülich

S. Garavaglia

Istituto Di Fisica Del Plasma Piero Caldirola, Milan

M. Garcia-Munoz

University of Seville

B. Geiger

University of Wisconsin Madison

L. Giannone

Max Planck Society

S. Gibson

Durham University

L. Gil

Instituto Superior Tecnico

E. Giovannozzi

ENEA

I. Girka

Max Planck Society

O. Girka

Max Planck Society

T. Gleiter

Max Planck Society

S. Glöggler

Max Planck Society

M. Gobbin

Consorzio Rfx

J. Gonzalez

Max Planck Society

J. Gonzalez Martin

University of Seville

T. Goodman

Swiss Federal Institute of Technology in Lausanne (EPFL)

G. Gorini

University of Milano-Bicocca

T. Görler

Max Planck Society

D. Gradic

Max Planck Society

G. Granucci

Istituto Di Fisica Del Plasma Piero Caldirola, Milan

A. Grater

Max Planck Society

G. Grenfell

Max Planck Society

H. Greuner

Max Planck Society

M. Griener

Max Planck Society

M. Groth

Aalto University

O. Grover

Max Planck Society

A. Gude

Max Planck Society

L. Guimarais

Instituto Superior Tecnico

S. Günter

Max Planck Society

D. Hachmeister

Instituto Superior Tecnico

A.H. Hakola

Technical Research Centre of Finland (VTT)

C. Ham

Culham Science Centre

T. Happel

Max Planck Society

N. Den Harder

Max Planck Society

G.F. Harrer

Vienna University of Technology

J.R. Harrison

Culham Science Centre

V. Hauer

Karlsruhe Institute of Technology (KIT)

T. Hayward-Schneider

Max Planck Society

B. Heinemann

Max Planck Society

P. Heinrich

Max Planck Society

T. Hellsten

General Atomics

S.S. Henderson

Culham Science Centre

P. Hennequin

École polytechnique

M. Herschel

Max Planck Society

S. Heuraux

Institut Jean Lamour

A. Herrmann

Max Planck Society

E. Heyn

Technische Universität Graz

F. Hitzler

Max Planck Society

J. Hobirk

Max Planck Society

K. Höfler

Max Planck Society

S. Hörmann

Max Planck Society

J.H. Holm

Technical University of Denmark (DTU)

M. Hölzl

Max Planck Society

C. Hopf

Max Planck Society

L. Horváth

University of York

T. Höschen

Max Planck Society

A. Houben

Institut Jean Lamour

A. Hubbard

Massachusetts Institute of Technology (MIT)

A. Huber

Forschungszentrum Jülich

K. Hunger

Max Planck Society

V. Igochine

Max Planck Society

M. Iliasova

Russian Academy of Sciences

J. Illerhaus

Max Planck Society

Klara Insulander Björk

Chalmers, Physics, Subatomic, High Energy and Plasma Physics

C. Ionita Schrittwieser

University of Innsbruck

I. Ivanova-Stanik

Institute of Plasma Physics & Laser Microfusion (IPPLM)

S. Jachmich

ITER Organization

W. Jacob

Max Planck Society

N. Jaksic

Max Planck Society

A. Jansen Van Vuuren

University of Seville

F. Jaulmes

Czech Academy of Sciences

Frank Jenko

Max Planck Society

T. Jensen

Technical University of Denmark (DTU)

E. Joffrin

The French Alternative Energies and Atomic Energy Commission (CEA)

A. Kallenbach

Max Planck Society

J. Kalis

Max Planck Society

A. Kappatou

Max Planck Society

J. Karhunen

Aalto University

C.-P. Kasemann

Max Planck Society

S. Kasilov

Technische Universität Graz

Y. Kazakov

Royal Military Academy

A. Kendl

University of Innsbruck

W. Kernbichler

Vienna University of Technology

E. Khilkevitch

Russian Academy of Sciences

M. Kircher

Max Planck Society

A. Kirk

Culham Science Centre

S. Kjer Hansen

Massachusetts Institute of Technology (MIT)

V. Klevarova

Ghent university

F. Klossek

Max Planck Society

G. Kocsis

Centre for Energy Research

M. Koleva

Max Planck Society

M. Komm

Czech Academy of Sciences

M. Kong

Swiss Federal Institute of Technology in Lausanne (EPFL)

A. Kramer-Flecken

Forschungszentrum Jülich

M. Krause

Max Planck Society

I. Krebs

Eindhoven University of Technology

A. Kreuzeder

Max Planck Society

K. Krieger

Max Planck Society

O. Kudlacek

Max Planck Society

D. Kulla

Max Planck Society

Taina Kurki-Suonio

Aalto University

B. Kurzan

Max Planck Society

B. Labit

Swiss Federal Institute of Technology in Lausanne (EPFL)

K. Lackner

Max Planck Society

F. Laggner

Princeton University

A. Lahtinen

Aalto University

P. Lainer

Vienna University of Technology

P.T. Lang

Max Planck Society

Ph Lauber

Max Planck Society

M Lehnen

ITER Organization

L. Leppin

Max Planck Society

E. Lerche

Max Planck Society

N. Leuthold

General Atomics

Li Li

Forschungszentrum Jülich

J. Likonen

Technical Research Centre of Finland (VTT)

O. Linder

Max Planck Society

H. Lindl

Max Planck Society

B. Lipschultz

University of York

Yueqiang Liu

General Atomics

Z. Lu

Max Planck Society

T. Luda Di Cortemiglia

Max Planck Society

N.C. Luhmann

University of California

T. Lunt

Max Planck Society

A Lyssoivan

Royal Military Academy

T. Maceina

Max Planck Society

J. Madsen

Technical University of Denmark (DTU)

A. Magnanimo

Max Planck Society

H. Maier

Max Planck Society

J. Mailloux

Culham Science Centre

R. Maingi

Princeton University

O. Maj

Max Planck Society

E. Maljaars

Eindhoven University of Technology

V. Maquet

Royal Military Academy

Andrea Mancini

Istituto Di Fisica Del Plasma Piero Caldirola, Milan

A. Manhard

Max Planck Society

P. Mantica

Istituto Di Fisica Del Plasma Piero Caldirola, Milan

M. Mantsinen

Centro Nacional de Supercomputacion

P. Manz

University of Greifswald

Mark Maraschek

Max Planck Society

C. Marchetto

Polytechnic University of Turin

M. Markl

Vienna University of Technology

L. Marrelli

Consorzio Rfx

P. Martin

Consorzio Rfx

F. Matos

Max Planck Society

M. Mayer

Max Planck Society

P. McCarthy

University College Cork

R. McDermott

Max Planck Society

G. Meng

Max Planck Society

R. Merkel

Max Planck Society

A. Merle

Swiss Federal Institute of Technology in Lausanne (EPFL)

H.F. Meyer

Culham Science Centre

M. Michelini

Max Planck Society

D. Milanesio

Polytechnic University of Turin

V. Mitterauer

Max Planck Society

P.A. Molina Cabrera

Max Planck Society

M. Muraca

Max Planck Society

F. Nabais

Instituto Superior Tecnico

V Naulin

Technical University of Denmark (DTU)

R. Nazikian

Princeton University

R.D. Nem

Technical University of Denmark (DTU)

R. Neu

Max Planck Society

A.H. Nielsen

Technical University of Denmark (DTU)

S. K. Nielsen

Technical University of Denmark (DTU)

T. Nishizawa

Max Planck Society

M. Nocente

University of Milano-Bicocca

I. Novikau

Max Planck Society

S. Nowak

Istituto Di Fisica Del Plasma Piero Caldirola, Milan

R. Ochoukov

Max Planck Society

J. Olsen

Technical University of Denmark (DTU)

P. Oyola

University of Seville

O. Pan

Max Planck Society

Gergely Papp

Max Planck Society

A. Pau

Swiss Federal Institute of Technology in Lausanne (EPFL)

G Pautasso

Max Planck Society

C. Paz-Soldan

General Atomics

M. Peglau

Max Planck Society

E. Peluso

Sapienza University of Rome

P. Petersson

Royal Institute of Technology (KTH)

C. Piron

Consorzio Rfx

U. Plank

Max Planck Society

B. Plaum

University of Stuttgart

B. Plöckl

Max Planck Society

V V Plyusnin

Instituto Superior Tecnico

G. Pokol

Centre for Energy Research

E. Poli

Max Planck Society

A. Popa

Max Planck Society

L. Porte

Swiss Federal Institute of Technology in Lausanne (EPFL)

J. Puchmayr

Max Planck Society

T. Pütterich

Max Planck Society

L. Radovanovic

Vienna University of Technology

M. Ramisch

University of Stuttgart

J. Rasmussen

Technical University of Denmark (DTU)

G.A. Rattá

Laboratorio Nacional de Fusion

S. Ratynskaia

Royal Institute of Technology (KTH)

G. Raupp

Max Planck Society

A. Redl

Tuscia University

D. Refy

Centre for Energy Research

M. Reich

Max Planck Society

F. Reimold

Max Planck Society

D. Reiser

Forschungszentrum Jülich

M. Reisner

Max Planck Society

D. Reiter

Forschungszentrum Jülich

B. Rettino

Max Planck Society

T. Ribeiro

Max Planck Society

D. Ricci

Istituto Di Fisica Del Plasma Piero Caldirola, Milan

R. Riedl

Max Planck Society

J. Riesch

Max Planck Society

J.F. Rivero-Rodriguez

University of Seville

G. Rocchi

ENEA

P. Rodriguez-Fernandez

Massachusetts Institute of Technology (MIT)

V. Rohde

Max Planck Society

G. Ronchi

Eindhoven University of Technology

M. Rott

Max Planck Society

M. Rubel

Royal Institute of Technology (KTH)

D. Ryan

Culham Science Centre

F. Ryter

Max Planck Society

S. Saarelma

Culham Science Centre

M. Salewski

Technical University of Denmark (DTU)

A. Salmi

Aalto University

O. Samoylov

Max Planck Society

L. Sanchis-Sanchez

University of Seville

J. Santos

Instituto Superior Tecnico

O. Sauter

Swiss Federal Institute of Technology in Lausanne (EPFL)

G. Schall

Max Planck Society

A. Schlüter

Max Planck Society

J. Scholte

Eindhoven University of Technology

K. Schmid

Max Planck Society

O. Schmitz

University of Wisconsin Madison

P.A. Schneider

Max Planck Society

R. Schrittwieser

University of Innsbruck

M. Schubert

Max Planck Society

C. Schuster

Max Planck Society

N. Schwarz

Max Planck Society

T. Schwarz-Selinger

Max Planck Society

Josef Schweinzer

Max Planck Society

F. Sciortino

Max Planck Society

O. Seibold-Benjak

Max Planck Society

A. Shabbir

Ghent university

A. Shalpegin

Swiss Federal Institute of Technology in Lausanne (EPFL)

S. E. Sharapov

Culham Science Centre

U. Sheikh

Swiss Federal Institute of Technology in Lausanne (EPFL)

A. Shevelev

Russian Academy of Sciences

G. Sias

University of Cagliari

M. Siccinio

Max Planck Society

B. Sieglin

Max Planck Society

A. Sigalov

Max Planck Society

A. Silva

Instituto Superior Tecnico

Carlos Silva

Instituto Superior Tecnico

D. Silvagni

Max Planck Society

J. Simpson

Culham Science Centre

S. Sipila

Aalto University

A. Snicker

Aalto University

E. R. Solano

Laboratorio Nacional de Fusion

C. Sommariva

Swiss Federal Institute of Technology in Lausanne (EPFL)

C. Sozzi

Istituto Di Fisica Del Plasma Piero Caldirola, Milan

M. Spacek

Max Planck Society

G. Spizzo

Consorzio Rfx

M. Spolaore

Consorzio Rfx

A. Stegmeir

Max Planck Society

M. Stejner

Technical University of Denmark (DTU)

D. Stieglitz

Max Planck Society

J. Stober

Max Planck Society

U. Stroth

Max Planck Society

E. Strumberger

Max Planck Society

G. Suarez Lopez

Max Planck Society

W. Suttrop

Max Planck Society

T. Szepesi

Centre for Energy Research

B. Tál

Max Planck Society

T. Tala

Technical Research Centre of Finland (VTT)

W. Tang

Max Planck Society

G. Tardini

Max Planck Society

M. Tardocchi

Istituto Di Fisica Del Plasma Piero Caldirola, Milan

D. Terranova

Consorzio Rfx

M. Teschke

Max Planck Society

E. Thorén

Royal Institute of Technology (KTH)

W. Tierens

Max Planck Society

Daniel Told

Max Planck Society

W. Treutterer

Max Planck Society

G.L. Trevisan

Consorzio Rfx

M. Tripský

Royal Military Academy

P. Ulbl

Max Planck Society

G. Urbanczyk

Max Planck Society

M. Usoltseva

Max Planck Society

M. Valisa

Consorzio Rfx

Martin Valovic

Culham Science Centre

S. Van Mulders

Swiss Federal Institute of Technology in Lausanne (EPFL)

M.A. Van Zeeland

General Atomics

F. Vannini

Max Planck Society

B. Vanovac

Massachusetts Institute of Technology (MIT)

P. Varela

Instituto Superior Tecnico

S. Varoutis

Karlsruhe Institute of Technology (KIT)

T. Verdier

Technical University of Denmark (DTU)

Geert Verdoolaege

Ghent university

N. Vianello

Consorzio Rfx

J. Vicente

Instituto Superior Tecnico

T. Vierle

Max Planck Society

E. Viezzer

University of Seville

I. Voitsekhovitch

Culham Science Centre

U. Von Toussaint

Max Planck Society

D. Wagner

Max Planck Society

X. Wang

Max Planck Society

M. Weiland

Max Planck Society

D. Wendler

Max Planck Society

A.E. White

Massachusetts Institute of Technology (MIT)

M. Willensdorfer

Max Planck Society

B. Wiringer

Max Planck Society

M. Wischmeier

Max Planck Society

R C Wolf

Max Planck Society

E. Wolfrum

Max Planck Society

Q. Yang

Chinese Academy of Sciences

C. Yoo

Massachusetts Institute of Technology (MIT)

Q. Yu

Max Planck Society

R. Zagórski

Institute of Plasma Physics & Laser Microfusion (IPPLM)

I. Zammuto

Max Planck Society

T. Zehetbauer

Max Planck Society

W. Zhang

Chinese Academy of Sciences

W. Zholobenko

Max Planck Society

A. Zibrov

Max Planck Society

M. Zilker

Max Planck Society

C. Zimmermann

Max Planck Society

A. Zito

Max Planck Society

S. Zoletnik

Centre for Energy Research

Nuclear Fusion

00295515 (ISSN) 17414326 (eISSN)

Vol. 64 11 112001

Subject Categories (SSIF 2011)

Other Physics Topics

Fusion, Plasma and Space Physics

DOI

10.1088/1741-4326/ad249d

More information

Latest update

1/16/2025