Amino acid sequence encodes protein abundance shaped by protein stability at reduced synthesis cost
Journal article, 2025
protein expression
protein sequence
protein stability
explainable machine learning
language models
deep learning
proteome
molecular dynamics
protein engineering
Author
Filip Buric
Chalmers, Life Sciences, Systems and Synthetic Biology
Sandra Viknander
Chalmers, Life Sciences, Systems and Synthetic Biology
Xiaozhi Fu
Chalmers, Life Sciences, Systems and Synthetic Biology
Oliver Lemke
Charité University Medicine Berlin
Oriol Gracia Carmona
University College London (UCL)
King's College London
Jan Zrimec
National Institute of Biology
Chalmers, Life Sciences, Systems and Synthetic Biology
Lukasz Szyrwiel
Charité University Medicine Berlin
Michael Mülleder
Charité University Medicine Berlin
M. Ralser
Charité University Medicine Berlin
Aleksej Zelezniak
King's College London
Vilnius University
Chalmers, Life Sciences, Systems and Synthetic Biology
Protein Science
0961-8368 (ISSN) 1469896x (eISSN)
Vol. 34 1 e5239MetaPlast: Exploiting microbial dark matter for engineering plastic degradation microbial system
Formas (2019-01403), 2020-01-01 -- 2023-12-31.
Using AI to unravel "DNA grammar" for synthetic biology applications
Swedish Research Council (VR) (2019-05356), 2020-01-01 -- 2024-12-31.
Subject Categories (SSIF 2011)
Biochemistry and Molecular Biology
Infrastructure
C3SE (-2020, Chalmers Centre for Computational Science and Engineering)
Chalmers e-Commons (incl. C3SE, 2020-)
DOI
10.1002/pro.5239
PubMed
39665261
Related datasets
URI: https://github.com/fburic/protein-mgem DOI: https://doi.org/10.5281/zenodo.8377126