Amino acid sequence encodes protein abundance shaped by protein stability at reduced synthesis cost
Artikel i vetenskaplig tidskrift, 2025

Understanding what drives protein abundance is essential to biology, medicine, and biotechnology. Driven by evolutionary selection, an amino acid sequence is tailored to meet the required abundance of a proteome, underscoring the intricate relationship between sequence and functional demand. Yet, the specific role of amino acid sequences in determining proteome abundance remains elusive. Here we show that the amino acid sequence alone encodes over half of protein abundance variation across all domains of life, ranging from bacteria to mouse and human. With an attempt to go beyond predictions, we trained a manageable-size Transformer model to interpret latent factors predictive of protein abundances. Intuitively, the model's attention focused on the protein's structural features linked to stability and metabolic costs related to protein synthesis. To probe these relationships, we introduce MGEM (Mutation Guided by an Embedded Manifold), a methodology for guiding protein abundance through sequence modifications. We find that mutations which increase predicted abundance have significantly altered protein polarity and hydrophobicity, underscoring a connection between protein structural features and abundance. Through molecular dynamics simulations we revealed that abundance-enhancing mutations possibly contribute to protein thermostability by increasing rigidity, which occurs at a lower synthesis cost.

protein stability

protein engineering

language models

deep learning

protein sequence

protein expression

molecular dynamics

explainable machine learning

proteome

Författare

Filip Buric

Chalmers, Life sciences, Systembiologi

Sandra Viknander

Chalmers, Life sciences, Systembiologi

Xiaozhi Fu

Chalmers, Life sciences, Systembiologi

Oliver Lemke

Charité Universitätsmedizin Berlin

Oriol Gracia Carmona

Faculty of Life Sciences & Medicine

University College London (UCL)

Jan Zrimec

Chalmers, Life sciences, Systembiologi

National Institute of Biology Ljubljana

Lukasz Szyrwiel

Charité Universitätsmedizin Berlin

Michael Mülleder

Charité Universitätsmedizin Berlin

M. Ralser

Charité Universitätsmedizin Berlin

Aleksej Zelezniak

Faculty of Life Sciences & Medicine

Chalmers, Life sciences, Systembiologi

Vilniaus universitetas

Protein Science

0961-8368 (ISSN) 1469896x (eISSN)

Vol. 34 1 e5239

MetaPlast: Nyttjande av "den mikrobiella mörka material" för att designa mikrobiella system som degraderar plast

Formas (2019-01403), 2020-01-01 -- 2023-12-31.

Använda AI för att upptäcka "DNA-grammatik" för syntetiska biologiska tillämpningar

Vetenskapsrådet (VR) (2019-05356), 2020-01-01 -- 2024-12-31.

Ämneskategorier

Biokemi och molekylärbiologi

Infrastruktur

C3SE (Chalmers Centre for Computational Science and Engineering)

Chalmers e-Commons

DOI

10.1002/pro.5239

PubMed

39665261

Relaterade dataset

URI: https://github.com/fburic/protein-mgem DOI: https://doi.org/10.5281/zenodo.8377126

Mer information

Senast uppdaterat

2024-12-19