Navigating protein landscapes with a machine-learned transferable coarse-grained model
Journal article, 2025

The most popular and universally predictive protein simulation models employ all-atom molecular dynamics, but they come at extreme computational cost. The development of a universal, computationally efficient coarse-grained (CG) model with similar prediction performance has been a long-standing challenge. By combining recent deep-learning methods with a large and diverse training set of all-atom protein simulations, we here develop a bottom-up CG force field with chemical transferability, which can be used for extrapolative molecular dynamics on new sequences not used during model parameterization. We demonstrate that the model successfully predicts metastable states of folded, unfolded and intermediate structures, the fluctuations of intrinsically disordered proteins and relative folding free energies of protein mutants, while being several orders of magnitude faster than an all-atom model. This showcases the feasibility of a universal and computationally efficient machine-learned CG model for proteins.

Author

Nicholas E. Charron

Rice University

Freie Universität Berlin

Zuse Institute Berlin (ZIB)

Klara Bonneau

Freie Universität Berlin

Aldo S. Pasos-Trejo

Freie Universität Berlin

Andrea Guljas

Freie Universität Berlin

Yaoyi Chen

Freie Universität Berlin

Felix Musil

Freie Universität Berlin

Jacopo Venturin

Freie Universität Berlin

Daria Gusew

Freie Universität Berlin

Iryna Zaporozhets

Rice University

Freie Universität Berlin

Andreas Kraemer

Freie Universität Berlin

Clark Templeton

Freie Universität Berlin

Atharva Kelkar

Freie Universität Berlin

Aleksander E. P. Durumeric

Freie Universität Berlin

Simon Olsson

Chalmers, Computer Science and Engineering (Chalmers), Data Science and AI

University of Gothenburg

Adria Perez

University Pompeu Fabra

Acellera

Maciej Majewski

University Pompeu Fabra

Acellera

Brooke E. Husic

Princeton University

Ankit Patel

Baylor College of Medicine

Rice University

Gianni De Fabritiis

Catalan Institution for Research and Advanced Studies

University Pompeu Fabra

Acellera

Frank Noe

Rice University

Freie Universität Berlin

Microsoft Research

Cecilia Clementi

Rice University

Freie Universität Berlin

Nature Chemistry

1755-4330 (ISSN) 1755-4349 (eISSN)

Vol. 17 8 1284-1292

Subject Categories (SSIF 2025)

Theoretical Chemistry

Bioinformatics (Computational Biology)

Biophysics

DOI

10.1038/s41557-025-01874-0

PubMed

40681718

More information

Latest update

10/13/2025