Boundedness Properties of the Maximal Operator in a Nonsymmetric Inverse Gaussian Setting
Journal article, 2025

We introduce a generalized inverse Gaussian setting and consider the maximal operator associated with the natural analogue of a nonsymmetric Ornstein-Uhlenbeck semigroup. We prove that it is bounded on Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{p}$$\end{document} when p is an element of(1,infinity]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (1,\infty ]$$\end{document} and that it is of weak type (1, 1), with respect to the relevant measure. For small values of the time parameter t, the proof hinges on the "forbidden zones" method previously introduced in the Gaussian context. But for large times the proof requires new tools.

Nondoubling measure

Maximal operator

Ornstein-Uhlenbeck semigroup

Weak type (1

Inverse gaussian measure

1)

Author

Tommaso Bruno

University of Genoa

Valentina Casarino

University of Padua

Paolo Ciatti

University of Padua

Peter Sjögren

Chalmers, Mathematical Sciences

University of Gothenburg

Potential Analysis

0926-2601 (ISSN) 1572-929X (eISSN)

Vol. In Press

Subject Categories (SSIF 2025)

Subatomic Physics

DOI

10.1007/s11118-025-10233-0

More information

Latest update

8/15/2025