Boundedness Properties of the Maximal Operator in a Nonsymmetric Inverse Gaussian Setting
Artikel i vetenskaplig tidskrift, 2025

We introduce a generalized inverse Gaussian setting and consider the maximal operator associated with the natural analogue of a nonsymmetric Ornstein-Uhlenbeck semigroup. We prove that it is bounded on Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{p}$$\end{document} when p is an element of(1,infinity]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (1,\infty ]$$\end{document} and that it is of weak type (1, 1), with respect to the relevant measure. For small values of the time parameter t, the proof hinges on the "forbidden zones" method previously introduced in the Gaussian context. But for large times the proof requires new tools.

Nondoubling measure

Maximal operator

Ornstein-Uhlenbeck semigroup

Weak type (1

Inverse gaussian measure

1)

Författare

Tommaso Bruno

Università degli Studi di Genova

Valentina Casarino

Università di Padova

Paolo Ciatti

Università di Padova

Peter Sjögren

Chalmers, Matematiska vetenskaper

Göteborgs universitet

Potential Analysis

0926-2601 (ISSN) 1572-929X (eISSN)

Vol. In Press

Ämneskategorier (SSIF 2025)

Subatomär fysik

DOI

10.1007/s11118-025-10233-0

Mer information

Senast uppdaterat

2025-08-15