Palladium Under Pressure: Multiscale Modeling of Nanoalloys for Hydrogen Sensing
Doctoral thesis, 2025
The vast configurational space accessible through alloying and nanostructuring makes computational modeling an efficient route to understand and optimize nanoalloys for H2 sensing. This thesis develops multiscale models to better understand the optical and thermodynamic properties of Pd nanoalloys for H2 sensing, anchored at the atomic scale via first-principles calculations.
The effect of alloying Pd with Au and Cu on the surface composition and adsorbate coverages under different environments is studied via cluster expansion models. It is found that Pd segregates to the surface in H2 and CO environments, due to strong adsorption, while Au segregates to the surface under vacuum conditions. Cu shows a more complex behavior, with a non-trivial preference for the subsurface layer under most conditions, and only modest presence in the top surface layer. The H–CO coadsorption behavior is primarily governed by the fabrication conditions, dictating whether Pd or Au segregates to the surface, while tuning the exact bulk alloy composition has only a minor effect. The experimentally observed role of Cu in mitigating CO poisoning must therefore go beyond adsorption thermodynamics, potentially by providing energetically feasible H absorption paths through the surface when the energetically most favorable paths are blocked by CO.
The H sensitivity of nanodisk devices is optimized by combining atomic-scale dielectric functions with continuum electrodynamic simulations of nanoalloy structures. Single disk simulations suggest that the H-induced plasmon shift is limited by an interplay between localized surface plasmonic resonances and interband transitions. In addition, a computational platform for designing optimal nanoarray-based sensors for specific targets is presented, paving the way for future efforts in multiplexed sensor design.
Bayesian optimization
Hydrogen sensing
surface segregation
nanoalloys
surface phase diagram
Palladium
CO poisoning
coadsorption
nanoplasmonics
Author
Pernilla Ekborg-Tanner
Chalmers, Physics, Condensed Matter and Materials Theory
Construction and Sampling of Alloy Cluster Expansions—A Tutorial
Prx Energy,;Vol. 3(2024)
Journal article
Hydrogen-driven surface segregation in Pd alloys from atomic-scale simulations
Journal of Physical Chemistry C,;Vol. 125(2021)p. 17248-17260
Journal article
Ekborg-Tanner, P., Erhart, P. Competing Adsorption of H and CO on Pd-alloy Surfaces: Mechanistic Insight into the Mitigating Effect of Cu on CO Poisoning
Computational Design of Alloy Nanostructures for Optical Sensing of Hydrogen
ACS Applied Nano Materials,;Vol. 5(2022)p. 10225-10236
Journal article
Ekborg-Tanner, P., Theodoridis, A., Fritzsche, J., Langhammer, C., Baldi, A., Erhart, P. Bayesian Optimization of PdAu Metasurfaces for Hydrogen Sensing: From First-principles Calculations to Device
Vätgas föreslås utgöra den primära energibäraren i en framtida såkallad vätgasekonomi. På grund av dess explosivitet är en grundförutsättning för ett sådant system att snabbt och säkert kunna detektera eventuella läckage. I denna avhandling undersöks hur nanomaterial av palladiumlegeringar kan användas som optiska sensorer för att detektera små mängder vätgas. När väte absorberas i palladium förändras materialets optiska egenskaper, vilket kan utnyttjas för att skapa sensorer som, i princip, skiftar färg på ett mätbart sätt.
Genom att kombinera kvantmekaniska beräkningar, statistisk termodynamik och elektrodynamiska simuleringar studeras både hur väte interagerar med materialet och hur detta påverkar ljusets växelverkan med nanostrukturerna. I synnerhet undersöks mekanismen bakom hur legering med guld och koppar gör sensorerna motståndskraftiga mot kolmonoxid och hur nanostrukturerna ska utformas för att optimera sensorfunktionen. Resultaten bidrar till en djupare förståelse av hur optiska vätesensorer kan designas och optimeras, och visar hur kombinationen av materialvetenskap, avancerade beräkningsmetoder och optimering kan driva utvecklingen av säkrare och mer effektiva energiteknologier.
Subject Categories (SSIF 2025)
Atom and Molecular Physics and Optics
Condensed Matter Physics
Driving Forces
Sustainable development
Areas of Advance
Nanoscience and Nanotechnology
Materials Science
DOI
10.63959/chalmers.dt/5807
ISBN
978-91-8103-350-2
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5807
Publisher
Chalmers
PJ-salen, Fysikgården 2, Göteborg
Opponent: Associate Professor Milica Todorovic, University of Turku, Finland