Deep generative models for molecular dynamics and design
Doctoral thesis, 2026
conformational sampling
Boltzmann generators
machine learning
drug discovery
Cheminformatics
generative modeling
transfer operators
AI4Science
Author
Juan Viguera Diez
Chalmers, Computer Science and Engineering (Chalmers), Data Science and AI
Generation of conformational ensembles of small molecules via surrogate model-assisted molecular dynamics
Machine Learning: Science and Technology,;Vol. 5(2024)
Journal article
Viguera Diez, J. Schreiner, M. Olsson S. Transferable Generative Models Bridge Femtosecond to Nanosecond Time-Step Molecular Dynamics
Boltzmann priors for Implicit Transfer Operators
13th International Conference on Learning Representations Iclr 2025,;(2025)p. 68862-68890
Paper in proceeding
De Novo Drug Design Using Reinforcement Learning with Graph- Based Deep Generative Models
Journal of Chemical Information and Modeling,;Vol. 62(2022)p. 4863-4872
Journal article
Subject Categories (SSIF 2025)
Computer Sciences
Computational Mathematics
DOI
10.63959/chalmers.dt/5818
ISBN
978-91-8103-361-8
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5818
Publisher
Chalmers
EC Lecture Hall (EDIT buildig)
Opponent: Prof. Tristan Bereau, Heidelberg University, Germany.