Deep generative models for molecular dynamics and design
Doktorsavhandling, 2026
conformational sampling
Boltzmann generators
machine learning
drug discovery
Cheminformatics
generative modeling
transfer operators
AI4Science
Författare
Juan Viguera Diez
Chalmers, Data- och informationsteknik, Data Science och AI
Generation of conformational ensembles of small molecules via surrogate model-assisted molecular dynamics
Machine Learning: Science and Technology,;Vol. 5(2024)
Artikel i vetenskaplig tidskrift
Viguera Diez, J. Schreiner, M. Olsson S. Transferable Generative Models Bridge Femtosecond to Nanosecond Time-Step Molecular Dynamics
Boltzmann priors for Implicit Transfer Operators
13th International Conference on Learning Representations Iclr 2025,;(2025)p. 68862-68890
Paper i proceeding
De Novo Drug Design Using Reinforcement Learning with Graph- Based Deep Generative Models
Journal of Chemical Information and Modeling,;Vol. 62(2022)p. 4863-4872
Artikel i vetenskaplig tidskrift
Ämneskategorier (SSIF 2025)
Datavetenskap (datalogi)
Beräkningsmatematik
DOI
10.63959/chalmers.dt/5818
ISBN
978-91-8103-361-8
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5818
Utgivare
Chalmers
EC Lecture Hall (EDIT buildig)
Opponent: Prof. Tristan Bereau, Heidelberg University, Germany.