On the microscopic foundation of dissipative particle dynamics
Journal article, 2009

Mesoscopic-particle-based fluid models, such as dissipative particle dynamics, are usually assumed to be coarse-grained representations of an underlying microscopic fluid. A fundamental question is whether there exists a map from microscopic particles in these systems to the corresponding coarse-grained particles, such that the coarse-grained system has the same bulk and transport properties as the underlying system. In this letter, we investigate the coarse-graining of microscopic fluids using a Voronoi-type projection that has been suggested in several studies. The simulations show that the projection fails in defining coarse-grained particles that have a physically meaningful connection to the microscopic fluid. In particular, the Voronoi projection produces identical coarse-grained equilibrium properties when applied to systems with different microscopic interactions and different bulk properties. © EPLA, 2009

systems

suspensions

fluid

molecular-dynamics

simulations

Author

Anders Eriksson

University of Gothenburg

Martin Nilsson Jacobi

Chalmers, Energy and Environment, Physical Resource Theory

Johan Nyström

Chalmers, Energy and Environment, Physical Resource Theory

Kolbjörn Tunström

Chalmers, Energy and Environment

Europhysics Letters

0295-5075 (ISSN) 1286-4854 (eISSN)

Vol. 86 4

Subject Categories

Physical Sciences

DOI

10.1209/0295-5075/86/44001

More information

Created

10/7/2017