Physiological and transcriptional characterization of Saccharomyces cerevisiae engineered for production of fatty acid ethyl esters
Journal article, 2016

Saccharomyces cerevisiae has previously been engineered to become a cell factory for the production of fatty acid ethyl esters (FAEEs), molecules suitable for crude diesel replacement. To find new metabolic engineering targets for the improvement of FAEE cell factories, three different FAEE-producing strains of S. cerevisiae, constructed previously, were compared and characterized by quantification of key fluxes and genome-wide transcription analysis. From both the physiological and the transcriptional data, it was indicated that strain CB2I20, with high expression of a heterologous wax ester synthase gene (ws2) and strain BdJ15, containing disruptions of genes DGA1, LRO1, ARE1, ARE2 and POX1, which prevent the conversion of acyl-CoA to sterol esters, triacylglycerides and the degradation to acetyl-CoA, triggered oxidative stress that consequently influenced cellular growth. In the latter strain, stress was possibly triggered by disabling the buffering capacity of lipid droplets in encapsulating toxic fatty acids such as oleic acid. Additionally, it was indicated that there was an increased demand for NADPH required for the reduction steps in fatty acid biosynthesis. In conclusion, our analysis clearly shows that engineering of fatty acid biosynthesis results in transcriptional reprogramming and has a significant effect on overall cellular metabolism.

batch fermentation

fatty acid ethyl ester

microarray

yeast

Author

Bouke Wim de Jong

Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology

Verena Siewers

Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology

Jens B Nielsen

Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology

FEMS Yeast Research

1567-1356 (ISSN) 1567-1364 (eISSN)

Vol. 16 1

Industrial Systems Biology of Yeast and A. oryzae (INSYSBIO)

European Commission (EC) (EC/FP7/247013), 2010-01-01 -- 2014-12-31.

Subject Categories

Industrial Biotechnology

Areas of Advance

Energy

Life Science Engineering (2010-2018)

DOI

10.1093/femsyr/fov105

More information

Created

10/7/2017