Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway
Journal article, 2016
escherichia-coli
Metabolic engineering
genes
reveals
Redox metabolism
chemicals
3-Hydroxypropionic acid
yeast
Saccharomyces cerevisiae
growth
increases
flux analysis
mutations
deletion
Author
K. R. Kildegaard
Technical University of Denmark (DTU)
N. B. Jensen
Evolva Biotech
Technical University of Denmark (DTU)
K. Schneider
Technical University of Denmark (DTU)
E. Czarnotta
RWTH Aachen University
E. Ozdemir
Technical University of Denmark (DTU)
T. Klein
Technical University of Denmark (DTU)
J. Maury
Technical University of Denmark (DTU)
B. E. Ebert
RWTH Aachen University
H. B. Christensen
Technical University of Denmark (DTU)
Yun Chen
Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology
Il-Kwon Kim
Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology
M. J. Herrgard
Technical University of Denmark (DTU)
L. M. Blank
RWTH Aachen University
J. Forster
Technical University of Denmark (DTU)
Jens B Nielsen
Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology
I. Borodina
Technical University of Denmark (DTU)
Microbial Cell Factories
1475-2859 (ISSN)
Vol. 15 53 53Subject Categories
Biological Sciences
Areas of Advance
Energy
Life Science Engineering (2010-2018)
DOI
10.1186/s12934-016-0451-5