Gating Protein Transport in Solid State Nanopores by Single Molecule Recognition
Journal article, 2018

Control of molecular translocation through nanoscale apertures is of great interest for DNA sequencing, biomolecular filters, and new platforms for single molecule analysis. However, methods for controlling the permeability of nanopores are very limited. Here, we show how nanopores functionalized with poly(ethylene glycol) brushes, which fully prevent protein translocation, can be reversibly gated to an "open" state by binding of single IgG antibodies that disrupt the macromolecular barrier. On the basis of surface plasmon resonance data we propose a two-state model describing the antibody-polymer interaction kinetics. Reversibly (weakly) bound antibodies decrease the protein exclusion height while irreversibly (strongly) bound antibodies do not. Our results are further supported by fluorescence readout from pore arrays and high-speed atomic force microscopy on single pores. This type of dynamic barrier control on the nanoscale provides new possibilities for biomolecular separation and analysis.

Author

Gustav Emilsson

Chalmers, Chemistry and Chemical Engineering, Applied Chemistry

Yusuke Sakiyama

University of Basel

Bita Malekian

Chalmers, Chemistry and Chemical Engineering, Applied Chemistry

Kunli Xiong

Chalmers, Chemistry and Chemical Engineering, Applied Chemistry

Zeynep Kaya

Chalmers, Chemistry and Chemical Engineering, Applied Chemistry

Roderick Y H Lim

University of Basel

Andreas Dahlin

Chalmers, Chemistry and Chemical Engineering, Applied Chemistry

ACS Central Science

2374-7943 (ISSN) 2374-7951 (eISSN)

Vol. 4 8 1007-1014

Subject Categories

Biochemistry and Molecular Biology

Biophysics

Other Industrial Biotechnology

DOI

10.1021/acscentsci.8b00268

More information

Latest update

1/17/2019