Volunteer Kinematics and Muscle Activity in Dynamic Events Representative of Pre-crash Scenarios, Evaluation Data for Human Body Models
Licentiate thesis, 2018
Kinematics and muscle responses of front-seat male passengers travelling at 73 km/h together with vehicle dynamics and boundary conditions were measured in the following scenarios: autonomous lane change and autonomous lane change combined with braking, each with two belt configurations; standard and reversible pre-pretensioner belts. The surface electromyography method was used to measure muscle activity and the data was then normalised using maximum voluntary contraction (MVC) values. Transformation of coordinates corresponding to several film targets attached to the head and torso was used to calculate head centre of gravity (CoG) and upper torso kinematics in 3-D. All data were presented in corridors comprising mean ± one standard deviation. Muscle activity as well as head and torso motion were influenced by type of the manoeuvre and the belt configuration used. In addition to lateral motion observed in lane changes, forward displacement of the head and upper torso were also observed in lane changes with braking. Differences in activation time and amplitude between muscles in the right and left side of the body with respect to the vehicle’s lateral motion were noted. Compared to the standard belt, pre-tensioning the seat belt prior to the manoeuvres reduced lateral and forward displacement of head and upper torso. Seat belt pre-tensioning was also associated with earlier muscle activation onset and significantly lower activation amplitude for specific muscles.
The data provided in this thesis can be used for further enhancement and validation of HBMs capable of simulating muscles activity in simulation of pre-crash situations, involving both sagittal and lateral loading. In addition to the volunteer data being suitable for directly assessing the design of integrated safety systems, the HBMs validated against the volunteer data can facilitate the prediction of injury outcomes in crashes that may follow evasive manoeuvres. As such, the HBMs would be applicable in the optimisation of integrated safety technologies targeted at the reduction of injuries of vehicle occupants. Further studies identifying responses of other occupant categories based on seated position, gender, age, stature and BMI are needed for subject-specific optimisation of safety systems in modern cars. Furthermore, studies on volunteer responses in other types of omnidirectional loading scenarios as well as the effect of being unprepared compared to anticipatory or voluntary responses, can help understand human motor control strategies specific to pre-crash situations.
EMG
volunteer
evasive manoeuvres
human body model
validation data
occupant kinematics
pre‐pretensioner belt
lane change
boundary conditions
Author
Ghazaleh Ghaffari
Chalmers, Mechanics and Maritime Sciences (M2), Vehicle Safety
Areas of Advance
Information and Communication Technology
Transport
Driving Forces
Sustainable development
Subject Categories (SSIF 2011)
Other Medical Engineering
Other Engineering and Technologies not elsewhere specified
Vehicle Engineering
Publisher
Chalmers
room Delta, Svea House, Forskningsgången 4, Gothenburg
Opponent: Dr. Anna-Lisa Osvalder, Chalmers University of Technology, Sweden