Evaluation of kraft and hydrolysis lignin hydroconversion over unsupported NiMoS catalyst
Journal article, 2023

Catalytic hydroconversion of Kraft and hydrolysis lignins was for the first time compared in a batch reactor over an unsupported NiMoS-SBA catalyst. We also report the effect of key reaction parameters on the yields and properties of the products. The results obtained at 20 wt% catalyst loading for hydrolysis lignin showed the highest monomer yield of 76.0 wt%, which consisted of 39 wt% aromatics with the lowest alkylphenolics yield of 10.1 wt%. Identical operating conditions, 400 °C, 80 bar, 5 h at 10 wt% catalyst loading, were used to compare both lignins and the highest monomer yield (64.3 wt%) was found for the hydrolysis lignin, consisting of 16.0 wt% alkylphenolics and 20.1 wt% aromatic compounds. These values are considerably higher than those for Kraft lignin with its 47.0 wt% monomer yield. We suggest that the reason for high yields of monomeric units from hydrolysis lignin is that it is more reactive due to its lower ash and sulfur contents and the chemical structural differences compared to the Kraft lignin. More precisely, the bio-oil from hydrolysis lignin contained higher yields of small molecules, sourced from ring-opening of cellulose in the hydrolysis lignin, which could stabilize the reactive oligomeric groups. These yields were two to seven times higher from kraft and hydrolysis lignin, respectively, compared to those obtained without catalyst. The results showed that the NiMoS-SBA catalyst is a promising catalyst for reductive depolymerization of lignin and in addition that the regenerated catalyst had good stability for multiple reaction cycles.

Unsupported NiMoS catalysts

Hydrotreatment

Lignin-oils

Hydrolysis lignin

Kraft lignin

Author

Abdenour Achour

Chalmers, Chemistry and Chemical Engineering, Chemical Technology

Diana Bernin

Chalmers, Chemistry and Chemical Engineering, Chemical Technology

Derek Creaser

Chalmers, Chemistry and Chemical Engineering, Chemical Technology

Louise Olsson

Chalmers, Chemistry and Chemical Engineering, Chemical Technology

Chemical Engineering Journal

1385-8947 (ISSN)

Vol. 453 139829

Subject Categories

Chemical Process Engineering

Other Chemistry Topics

Organic Chemistry

DOI

10.1016/j.cej.2022.139829

More information

Latest update

11/4/2022