Adaptiveness, Asynchrony, and Resource Efficiency in Parallel Stochastic Gradient Descent
Doctoral thesis, 2023

Show more

Author

Karl Bäckström

Network and Systems

Included papers

MindTheStep-AsyncPSGD: Adaptive Asynchronous Parallel Stochastic Gradient Descent

Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019,;(2019)p. 16-25

Paper in proceeding

Consistent lock-free parallel stochastic gradient descent for fast and stable convergence

Proceedings - 2021 IEEE 35th International Parallel and Distributed Processing Symposium, IPDPS 2021,;(2021)p. 423-432

Paper in proceeding

ASAP.SGD: Instance-based Adaptiveness to Staleness in Asynchronous SGD

Proceedings of Machine Learning Research,;Vol. PMLR 162(2022)p. 1261-1271

Paper in proceeding

Bäckström, K, Papatriantafilou, M, Tsigas, P. Less is more: Elastic Parallelism Control for Asynchronous SGD

Manuscript

Popular science description

Show more

Research Project(s)

WASP SAS: Structuring data for continuous processing and ML systems

Wallenberg AI, Autonomous Systems and Software Program, 2018-01-01 -- 2023-01-01.

Categorizing

Driving Forces

Sustainable development

Innovation and entrepreneurship

Subject Categories (SSIF 2011)

Computer and Information Science

Roots

Basic sciences

Identifiers

ISBN

978-91-7905-855-5

Other

Series

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5321

Publisher

Chalmers

Public defence

2023-05-30 13:15 -- 17:00

EE

Online

Opponent: Assaf Schuster, Technion - Israel Institute of Technology, Israel

More information

Latest update

5/5/2023 1