HYPOSTRUCT: A key breakthrough in hydrogen fuel cells: enhancing macroscopic mass transport properties by tailoring the porous microstructure
Forskningsprojekt, 2019 – 2021

Given their high conversion efficiency and zero-emission characteristics, hydrogen fuel cells are extremely attractive for replacing current energy conversion and power generation technologies. Nevertheless, they still need significant technological improvements in order to increase their competitiveness in the mobility and energy conversion market. More to the point, nowadays, the increase of the effective gas-liquid mass transport in the porous electrodes is highly demanded to improve cell performances.
The present proposal aims to investigate and improve the transport properties of two phase flows in hydrogen fuel cells porous materials with an innovative bottom-up approach: tailoring the porous microstructure in order to achieve the desired macroscopic feature, i.e. enhancing liquid water removal and promoting gas transport. The pore geometrical microscopic features (size, form, anisotropic structure) and the chemical behaviour of the pores surface (hydro -philic-phobic features) will be tuned and their effect on water imbibition, drainage and spatial and temporal distribution will be investigated by means of numerical simulations. An advancement in fuel cells technology is expected by characterising the optimal design of the porous electrodes which will significantly increase cells performances and open up a route for a new generation of fuel cells.


Dario Maggiolo (kontakt)

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Henrik Ström

Chalmers, Mekanik och maritima vetenskaper, Strömningslära


Europeiska kommissionen (EU)

Projekt-id: EC/H2020/790744
Finansierar Chalmers deltagande under 2019–2021

Relaterade styrkeområden och infrastruktur

Hållbar utveckling






Grundläggande vetenskaper


C3SE (Chalmers Centre for Computational Science and Engineering)


Innovation och entreprenörskap




Asymmetric invasion in anisotropic porous media

Artikel i vetenskaplig tidskrift

Mer information

Senast uppdaterat