Robustly and Optimally Controlled Training Of neural Networks I (OCTON I)
Forskningsprojekt, 2019
– 2023
This project aims at developing novel data training methods for network of function approximators (such as neural networks) based on robust and optimal control theory. The main idea is to utilize approximate neural tangent kernel parametrization in order to dynamically constrain training objectives. In this project we will develop novel methods that accounts for non-traditional training objectives (other than mean square prediction error) and corrupted data sequence. The latter claims for robustification. Conservativeness, stability of training, guaranteed rate of convergence, scalable numerical optimization routines will be developed.
Deltagare
Viktor Andersson (kontakt)
Chalmers, Elektroteknik, System- och reglerteknik
Rebecka Jörnsten
Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik
Balázs Adam Kulcsár
Chalmers, Elektroteknik, System- och reglerteknik
Finansiering
Centiro
Finansierar Chalmers deltagande under 2019–2023
Relaterade styrkeområden och infrastruktur
Transport
Styrkeområden