Maskininlärning för att använda biobaserade byggstenar i tensidtillverkning
Forskningsprojekt , 2020 – 2023

For the surfactant industry, the shift towards bio-based economy implies sourcing more building blocks from natural resources. Even though a wide variety of bio-based raw materials is already available, their utilization is very limited in surfactant production as their chemical characterization is too tedious, owing to the complexity of the mixtures they are made of. Such an example is the molecular family of tannins which, despite having attractive features, presents a too important molecular heterogeneity for being employed as such.Our proposal aims at solving this issue by utilizing Machine Learning in the characterization process of the raw materials as well as in the synthesis of the surfactant. We will produce a database of tannin-based surfactants that will be low-level analysed by spectroscopic techniques (e.g. NMR, IR, UV spectroscopies). The spectra along with the physicochemical properties (e.g. critical micelle concentration) and the modification path will feed a convolutional neural network. In the end, the trained network, by integrating spectroscopic data, physicochemical properties, chemical modifications, will predict, from the spectroscopic fingerprint of the raw materials the chemical path to achieve the desired properties.This technology could then be integrated in production to continuously adapt the chemistry based on online spectroscopy (e.g. IR) to achieve product specifications but could also be generalized to other bio-based building blocks.


Romain Bordes (kontakt)

Forskare vid Chalmers, Kemi och kemiteknik, Tillämpad kemi

Krzysztof Kolman

Doktor vid Chalmers, Kemi och kemiteknik, Tillämpad kemi, Teknisk ytkemi

Lars Nordstierna

Biträdande professor vid Chalmers, Kemi och kemiteknik, Tillämpad kemi, Lars Evenäs Group


Vetenskapsrådet (VR)

Finansierar Chalmers deltagande under 2020–2023

Mer information

Senast uppdaterat