Probabilistic models and deep learning - bridging the gap
Forskningsprojekt , 2019 – 2024

In this project, we will develop theory and methods related to the interplay between probabilistic models and deep learning. More specifically, we intend to develop both new models and new inference and learning algorithms for applications where latent variables are naturally characterized using, for instance, probabilistic graphical models or stochastic processes, whereas data is from some domain where deep learning has been successful (e.g., images).

The family of problems that involve such interplay between deep learning and probabilistic models is general, and we expect to derive tools that are widely applicable. However, to make the research more concrete and to showcase the merits of the new methodology we will study three specific applications in more depth, each one of significant importance on its own: learning from weak annotations, dynamical systems with deep-learning-based likelihoods, and automated mitosis detection and counting in histopathology.

Deltagare

Lennart Svensson (kontakt)

Professor vid Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik, Signalbehandling

Jakob Lindqvist

Doktorand vid Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik, Signalbehandling

Samarbetspartners

Linköpings universitet

Linköping, Sweden

Finansiering

Wallenberg AI, Autonomous Systems and Software Program

(Finansieringsperiod saknas)

Relaterade styrkeområden och infrastruktur

Informations- och kommunikationsteknik

Styrkeområden

Transport

Styrkeområden

Hälsa och teknik

Styrkeområden

Publikationer

Mer information

Senast uppdaterat

2021-08-19