DNA Closed Nanostructures: A Structural and Monte Carlo Simulation Study
Artikel i vetenskaplig tidskrift, 2008

DNA nanoconstructs are obtained in solution by using six unique 42-mer DNA oligonucleotides, whose sequences have been designed to form a pseudohexagonal structure. The required flexibility is provided by the insertion of two non-base-paired thymines in the middle of each sequence that work as flexible hinges and constitute the corners of the nanostructure when formed. We show that hexagonally shaped nanostructures of about 7 nm diameter and their corresponding linear open constructs are formed by self-assembly of the specifically designed linear oligonucleotides. The structural and dynamical characterization of the nanostructure is obtained in situ for the first time by using dynamic light scattering (DLS), a noninvasive method that provides a fast dynamic and structural analysis and allows the characterization of the different synthetic DNA nanoconstructs in solution. A validation of the LS results is obtained through Monte Carlo (MC) simulations and atomic force microscopy (AFM). In particular, a mesoscale molecular model for DNA, developed by Knotts et al., is exploited to perform MC simulations and to obtain information about the conformations as well as the conformational flexibilities of these nanostructures, while AFM provides a very detailed particle analysis that yields an estimation of the particle size and size distribution. The structural features obtained by MC and AFM are in good agreement with DLS, showing that DLS is a fast and reliable tool for characterization of DNA nanostructures in solution. © 2008 American Chemical Society.

Författare

F. B. Bombelli

Universita degli Studi di Firenze

F. Gambinossi

Universita degli Studi di Firenze

M. Lagi

Universita degli Studi di Firenze

D. Berti

Universita degli Studi di Firenze

G. Caminati

Universita degli Studi di Firenze

T. Brown

University of Southampton

F. Sciortino

Universita degli Studi di Roma La Sapienza

Bengt Nordén

Chalmers, Kemi- och bioteknik, Fysikalisk kemi

P. Baglioni

Universita degli Studi di Firenze

Journal of Physical Chemistry B

1520-6106 (ISSN) 1520-5207 (eISSN)

Vol. 112 15283-15294

Ämneskategorier

Fysikalisk kemi

DOI

10.1021/jp804544u