Fekete points and convergence towards equilibrium measures on complex manifolds
Artikel i övriga tidskrifter, 2011

Building on the first two authors' previous results, we prove a general criterion for convergence of (possibly singular) Bergman measures towards equilibrium measures on complex manifolds. The criterion may be formulated in terms of growth properties of balls of holomorphic sections, or equivalently as an asymptotic minimization of generalized Donaldson L-functionals. Our result yields in particular the proof of a well-known conjecture in pluripotential theory concerning the equidistribution of Fekete points, and it also gives the convergence of Bergman measures towards equilibrium for Bernstein-Markov measures. Applications to interpolation of holomorphic sections are also discussed.

Författare

Robert Berman

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

Sebastien Boucksom

Universite Pierre et Marie Curie (UPMC)

David Witt Nyström

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

Acta Mathematica

1871-2509 (ISSN)

Vol. 207 1-27

Ämneskategorier

Matematik

Fundament

Grundläggande vetenskaper

DOI

10.1007/s11511-011-0067-x