Impact of dissolved sodium salts on kraft cooking reactions
Artikel i vetenskaplig tidskrift, 2009

This study examined the effects of inactive ions - ions not reacting with wood - during kraft cooking, which thus far have received modest attention. Six different sodium salts were added to kraft cooking liquors at two different levels of alkalinities. Delignification as well as the formation and degradation of hexenuronic acid (HexA) were observed of Scots pine sapwood meal. The delignification rate was greatly affected by the presence of additional anions. Chloride ions had the greatest retarding effect, while the addition of polyacrylate ions had almost no effect. When carbonate, sulphate and lactate ions were added to the liquors, the delignification rates were in-between the series with chloride and polyacrylates ions. We suggest that the anions affect the solubility of lignin fragments in analogy to the Hofmeister effect observed in various macromolecular systems in the presence of dissolved salts. When the reactions involving HexA were examined, the opposite results were obtained. In that case, the highest reaction rates were in the presence of chloride ions, and the lowest rates were obtained when no extra ions were added, and the second lowest rates were obtained in the presence of polyacrylate ions. As for delignification, the cooking series containing carbonate, sulphate and lactate ions had a reaction rate in-between the series with the highest and lowest rates. The differences obtained with various inorganic ions can be qualitatively explained by the Donnan equilibrium theory and by the variation in activity coefficients of hydroxide ions. Findings imply that knowledge of kraft cooking is far from complete. The effects of inactive ions on reaction kinetics should also receive more attention. © 2009 by Walter de Gruyter.


Johannes Bogren

Chalmers, Kemi- och bioteknik, Skogsindustriell kemiteknik

Harald Brelid

Chalmers, Kemi- och bioteknik, Skogsindustriell kemiteknik

Marta Anna Bialik

Chalmers, Kemi- och bioteknik, Skogsindustriell kemiteknik

Hans Theliander

Wallenberg Wood Science Center (WWSC)

Chalmers, Kemi- och bioteknik, Skogsindustriell kemiteknik


0018-3830 (ISSN) 1437-434X (eISSN)

Vol. 63 226-231


Kemiska processer