A variational approach to complex Monge-Ampere equations
Artikel i vetenskaplig tidskrift, 2013

We show that degenerate complex Monge-Ampère equations in a big cohomology class of a compact Kähler manifold can be solved using a variational method, without relying on Yau’s theorem. Our formulation yields in particular a natural pluricomplex analogue of the classical logarithmic energy of a measure. We also investigate Kähler-Einstein equations on Fano manifolds. Using continuous geodesics in the closure of the space of Kähler metrics and Berndtsson’s positivity of direct images, we extend Ding-Tian’s variational characterization and Bando-Mabuchi’s uniqueness result to singular Kähler-Einstein metrics. Finally, using our variational characterization we prove the existence, uniqueness and convergence as k→∞ of k-balanced metrics in the sense of Donaldson both in the (anti)canonical case and with respect to a measure of finite pluricomplex energy.


Robert Berman

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

Sebastien Boucksom

Universite Pierre et Marie Curie (UPMC)

Viincent Guedj

Universite Paul Sabatier Toulouse III

Ahmed Zeriahi

Universite Paul Sabatier Toulouse III

Publications Mathématiques

0073-8301 (ISSN)

Vol. 117 179-245




Grundläggande vetenskaper