Combined segmentation and tracking of neural stem-cells
Artikel i vetenskaplig tidskrift, 2005

In this paper we analyze neural stem/progenitor cells in an time-lapse image sequence. By using information about the previous positions of the cells, we are able to make a. better selection of possible cells out of a collection of blob-like objects. As a blob detector we use Laplacian of Gaussian (LoG) filters at multiple scales, and the cell contours of the selected cells are segmented using dynamic programming. After the segmentation process the cells are tracked in the sequence using a. combined nearest-neighbor and correlation matching technique. An evaluation of the system show that 95% of the cells were correctly segmented and tracked between consecutive frames.

Författare

Karin Althoff

Chalmers, Signaler och system, Signalbehandling och medicinsk teknik

Johan Degerman

Chalmers, Signaler och system, Signalbehandling och medicinsk teknik

Tomas Gustavsson

Chalmers, Signaler och system, Signalbehandling och medicinsk teknik

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

03029743 (ISSN) 16113349 (eISSN)

Vol. 3540 282-291

Ämneskategorier

Datorseende och robotik (autonoma system)

Mer information

Skapat

2017-10-06