Hybrid RANS-LES: an Approach to make LES Applicable at High Reynolds Number
Paper i proceeding, 2004

The main bottle neck for using Large Eddy Simulations at high Reynolds number is the requirement of very fine meshes near walls. Hybrid LES-RANS was invented to get rid of this limitation. In this method unsteady RANS (URANS) is used near walls and away from walls LES is used. The matching between URANS and LES takes place in the inner log-region. In the present paper a method to improve standard LES-RANS is evaluated. The improvement consists of adding instantaneous turbulent fluctuations (forcing conditions) at the matching plane in order to provide the equations in the LES region with relevant turbulent structures. The fluctuations are taken from a DNS of a generic boundary layer. Simulations of fully developed channel flow and plane asymmetric diffuser flow are presented. Hybrid LES-RANS is used both with and without forcing conditions.


Lars Davidson

Chalmers, Tillämpad mekanik

Simon Dahlström

Chalmers, Tillämpad mekanik

CHT-04: Advances in Computational Heat Transfer III


Annan fysik