Towards a quantum resistance standard based on epitaxial graphene
Artikel i vetenskaplig tidskrift, 2010

The quantum Hall effect(1) allows the international standard for resistance to be defined in terms of the electron charge and Planck's constant alone. The effect comprises the quantization of the Hall resistance in two-dimensional electron systems in rational fractions of R-K = h/e(2) = 25 812.807 557(18) Omega, the resistance quantum(2). Despite 30 years of research into the quantum Hall effect, the level of precision necessary for metrology-a few parts per billion-has been achieved only in silicon and III-V heterostructure devices(3-5). Graphene should, in principle, be an ideal material for a quantum resistance standard(6), because it is inherently two-dimensional and its discrete electron energy levels in a magnetic field (the Landau levels(7)) are widely spaced. However, the precisions demonstrated so far have been lower than one part per million(8). Here, we report a quantum Hall resistance quantization accuracy of three parts per billion in monolayer epitaxial graphene at 300 mK, four orders of magnitude better than previously reported. Moreover, by demonstrating the structural integrity and uniformity of graphene over hundreds of micrometres, as well as reproducible mobility and carrier concentrations across a half-centimetre wafer, these results boost the prospects of using epitaxial graphene in applications beyond quantum metrology.

berrys phase

quantized hall resistance

metrology

Författare

A.Y. Tzalenchuk

National Physical Laboratory (NPL)

Samuel Lara Avila

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Alexei Kalaboukhov

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

S. Paolillo

Politecnico di Milano

M. Syvajarvi

Linköpings universitet

R. Yakimova

Linköpings universitet

O. Kazakova

National Physical Laboratory (NPL)

Tjbm Janssen

National Physical Laboratory (NPL)

V. Fal'ko

Lancaster University

Sergey Kubatkin

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Nature Nanotechnology

1748-3387 (ISSN)

Vol. 5 186-189

Ämneskategorier

Fysik

DOI

10.1038/NNANO.2009.474