NBmalloc: Allocating Memory in a Lock-Free Manner
Artikel i vetenskaplig tidskrift, 2010

Efficient, scalable memory allocation for multithreaded applications on multiprocessors is a significant goal of recent research. In the distributed computing literature it has been emphasized that lock-based synchronization and concurrency-control may limit the parallelism in multiprocessor systems. Thus, system services that employ such methods can hinder reaching the full potential of these systems. A natural research question is the pertinence and the impact of lock-free concurrency control in key services for multiprocessors, such as in the memory allocation service, which is the theme of this work. We show the design and implementation of NBmalloc, a lock-free memory allocator designed to enhance the parallelism in the system. The architecture of NBmalloc is inspired by Hoard, a well-known concurrent memory allocator, with modular design that preserves scalability and helps avoiding false-sharing and heap-blowup. Within our effort to design appropriate lock-free algorithms for NBmalloc, we propose and show a lock-free implementation of a new data structure, flat-set, supporting conventional "internal" set operations as well as "inter-object" operations, for moving items between flat-sets. The design of NBmalloc also involved a series of other algorithmic problems, which are discussed in the paper. Further, we present the implementation of NBmalloc and a study of its behaviour in a set of multiprocessor systems. The results show that the good properties of Hoard w.r.t. false-sharing and heap-blowup are preserved.


Lock-free synchronization

Memory allocation

Multithreaded applications





A. Gidenstam


Marina Papatriantafilou

Chalmers, Data- och informationsteknik, Nätverk och system

Philippas Tsigas

Chalmers, Data- och informationsteknik, Nätverk och system


0178-4617 (ISSN) 1432-0541 (eISSN)

Vol. 58 2 304-338


Data- och informationsvetenskap



Mer information

Senast uppdaterat