Development of patient-specific breast electromagnetic model based on clinical magnetic resonance images
Paper i proceeding, 2010
The rapid development of computer hardware in the last two decades provides a platform for solving large and complex problems numerically. In computational electromagnetics (CEM), extensive work has been contributed to the development of the finite-difference time domain (FDTD) method [1] with a significant interest of modeling electromagnetic phenomena concerning human bodies. In the microwave frequency (few hundred MHz to GHz region), dielectric property of human bodies is highly heterogeneous and varies as a function of frequency [2] . Analytical solutions of electromagnetic wave propagations inside such complex environments are usually not available and thus numerical solutions become important. © 2010 IEEE.