A finite element method with discontinuous rotations for the Mindlin-Reissner plate model
Artikel i vetenskaplig tidskrift, 2011

We present a continuous-discontinuous finite element method for the Mindlin-Reissner plate model based on continuous polynomials of degree k >= 2 for the transverse displacements and discontinuous polynomials of degree k - 1 for the rotations. We prove a priori convergence estimates, uniformly in the thickness of the plate, and thus show that locking is avoided. We also derive a posteriori error estimates based on duality, together with corresponding adaptive procedures for controlling linear functionals of the error. Finally, we present some numerical results.

galerkin method

Plate model

elasticity

Discontinuous Galerkin

Error estimates

Nitsche's method

Författare

Peter F G Hansbo

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

David Heintz

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

M. G. Larson

Umeå universitet

Computer Methods in Applied Mechanics and Engineering

0045-7825 (ISSN)

Vol. 200 5-8 638-648

Ämneskategorier

Beräkningsmatematik

DOI

10.1016/j.cma.2010.09.009

Mer information

Senast uppdaterat

2018-02-27