Runaway electron drift orbits in magnetostatic perturbed fields
Artikel i vetenskaplig tidskrift, 2011

Disruptions in large tokamaks can lead to the generation of a relativistic runaway electron beam that may cause serious damage to the first wall. To mitigate the disruption and suppress the runaway beam the application of resonant magnetic perturbations has been suggested. In this work we investigate the effect of resonant magnetic perturbations on the confinement of runaway electrons by simulating their drift orbits in magnetostatic perturbed fields and calculating the orbit losses for various initial energies and magnetic perturbation magnitudes. In the simulations we use a TEXTOR-like configuration and solve the relativistic, gyro-averaged drift equations for the runaway electrons including synchrotron radiation and collisions. The results indicate that runaway electrons are well confined in the core of the device, but the onset time of runaway losses closer to the edge is dependent on the magnetic perturbation level and thereby can affect the maximum runaway current. However, the runaway current damping rate is not sensitive to the magnetic perturbation level, in agreement with experimental observations.

Författare

Gergely Papp

Chalmers, Teknisk fysik, Nukleär teknik

Michael Drevlak

Max-Planck-Gesellschaft

Tünde Fülöp

Chalmers, Teknisk fysik, Nukleär teknik

Per Helander

Max-Planck-Gesellschaft

Nuclear Fusion

0029-5515 (ISSN) 1741-4326 (eISSN)

Vol. 51 4 043004- 043004

Drivkrafter

Hållbar utveckling

Styrkeområden

Energi

Fundament

Grundläggande vetenskaper

Ämneskategorier

Fusion, plasma och rymdfysik

DOI

10.1088/0029-5515/51/4/043004

Mer information

Senast uppdaterat

2022-04-05