A finite element time relaxation method
Artikel i vetenskaplig tidskrift, 2011

We discuss a finite element time-relaxation method for high Reynolds number flows. The method uses local projections on polynomials defined on macroelements of each pair of two elements sharing a face. We prove that this method shares the optimal stability and convergence properties of the continuous interior penalty (CIP) method. We give the formulation both for the scalar convection-diffusion equation and the time-dependent incompressible Euler equations and the associated convergence results. This note finishes with some numerical illustrations. (C) 2010 Academic des sciences. Published by Elsevier Masson SAS. All rights reserved.

navier-stokes equations

stabilization

galerkin approximations

Författare

R. Becker

Universite de Pau et des Pays de L'Adour

Erik Burman

University of Sussex

Peter F G Hansbo

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

Comptes Rendus Mathematique

1631-073X (ISSN)

Vol. 349 5-6 353-356

Ämneskategorier

Matematik

DOI

10.1016/j.crma.2010.12.010