A finite element time relaxation method
Artikel i vetenskaplig tidskrift, 2011

We discuss a finite element time-relaxation method for high Reynolds number flows. The method uses local projections on polynomials defined on macroelements of each pair of two elements sharing a face. We prove that this method shares the optimal stability and convergence properties of the continuous interior penalty (CIP) method. We give the formulation both for the scalar convection-diffusion equation and the time-dependent incompressible Euler equations and the associated convergence results. This note finishes with some numerical illustrations. (C) 2010 Academic des sciences. Published by Elsevier Masson SAS. All rights reserved.

galerkin approximations

stabilization

navier-stokes equations

Författare

R. Becker

Universite de Pau et des Pays de L'Adour

Erik Burman

University of Sussex

Peter F G Hansbo

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

Comptes Rendus Mathematique

1631-073X (ISSN)

Vol. 349 353-356

Ämneskategorier

Matematik

DOI

10.1016/j.crma.2010.12.010