Observational tests of interstellar methanol formation
Artikel i vetenskaplig tidskrift, 2011

Context. It has been established that the classical gas-phase production of interstellar methanol (CH3OH) cannot explain observed abundances. Instead it is now generally thought that the main formation path has to be by successive hydrogenation of solid CO on interstellar grain surfaces. Aims: While theoretical models and laboratory experiments show that methanol is efficiently formed from CO on cold grains, our aim is to test this scenario by astronomical observations of gas associated with young stellar objects (YSOs). Methods: We have observed the rotational transition quartets J = 2K - 1K of 12CH3OH and 13CH3OH at 96.7 and 94.4 GHz, respectively, towards a sample of massive YSOs in different stages of evolution. In addition, the J = 1-0 transitions of 12C18O and 13C18O were observed towards some of these sources. We use the 12C/13C ratio to discriminate between gas-phase and grain surface origin: If methanol is formed from CO on grains, the ratios should be similar in CH3OH and CO. If not, the ratio should be higher in CH3OH due to 13C fractionation in cold CO gas. We also estimate the abundance ratios between the nuclear spin types of methanol (E and A). If methanol is formed on grains, this ratio is likely to have been thermalized at the low physical temperature of the grain, and therefore show a relative over-abundance of A-methanol. Results: We show that the 12C/13C isotopic ratio is very similar in gas-phase CH3OH and C18O, on the spatial scale of about 40", towards four YSOs. For two of our sources we find an overabundance of A-methanol as compared to E-methanol, corresponding to nuclear spin temperatures of 10 and 16 K. For the remaining five sources, the methanol E/A ratio is less than unity. Conclusions: While the 12C/13C ratio test is consistent with methanol formation from hydrogenation of CO on grain surfaces, the result of the E/A ratio test is inconclusive.

interstellar medium

astrochemistry

interstellar molecules

Författare

Eva Wirström

Chalmers, Rymd- och geovetenskap, Radioastronomi och astrofysik

Wolf D. Geppert

Stockholms universitet

Åke Hjalmarson

Chalmers, Rymd- och geovetenskap, Radioastronomi och astrofysik

Carina Persson

Chalmers, Rymd- och geovetenskap, Radioastronomi och astrofysik

John H Black

Chalmers, Rymd- och geovetenskap, Radioastronomi och astrofysik

Per Bergman

Chalmers, Rymd- och geovetenskap, Onsala rymdobservatorium

Thomas J. Millar

Queen's University Belfast

M. Hamberg

Stockholms universitet

E. Vigren

Stockholms universitet

Astronomy and Astrophysics

0004-6361 (ISSN) 1432-0746 (eISSN)

Vol. 533 A24

Ämneskategorier (SSIF 2011)

Astronomi, astrofysik och kosmologi

Fundament

Grundläggande vetenskaper

DOI

10.1051/0004-6361/201116525

Mer information

Senast uppdaterat

2018-05-14