Extending existing combined heat and power plants for synthetic natural gas production
Artikel i vetenskaplig tidskrift, 2012

In this work, integration of a synthetic natural gas (SNG) production process with an existing biomass CHP steam power cycle is investigated. The paper assesses two different biomass feedstock drying technologies-steam drying and low-temperature air drying-for the SNG process. Using pinch technology, different levels of thermal integration between the steam power cycle and the SNG process are evaluated. The base case cold gas efficiency for the SNG process is 69.4% based on the lower heating value of wet fuel. The isolated SNG-related electricity production is increased by a factor of 2.5 for the steam dryer alternative, and tenfold for the low-temperature air dryer when increasing the thermal integration. The cold gas efficiency is not affected by the changes. Based on an analysis of changes to turbine steam flow, the integration of SNG production with an existing steam power cycle is deemed technically feasible.

Energy systems

Synthetic natural gas

Process integration

Biofuels

Modelling

Författare

Stefan Heyne

Industriella energisystem och -tekniker

Henrik Thunman

Chalmers, Energi och miljö, Energiteknik

Simon Harvey

Industriella energisystem och -tekniker

International Journal of Energy Research

0363-907X (ISSN)

Vol. 36 5 670-681

Drivkrafter

Hållbar utveckling

Ämneskategorier

Energiteknik

Kemiteknik

Styrkeområden

Energi

DOI

10.1002/er.1828