A bimetallic nanoantenna for directional colour routing
Artikel i vetenskaplig tidskrift, 2011

Recent progress in nanophotonics includes demonstrations of meta-materials displaying negative refraction at optical frequencies, directional single photon sources, plasmonic analogies of electromagnetically induced transparency and spectacular Fano resonances. The physics behind these intriguing effects is to a large extent governed by the same single parameter-optical phase. Here we describe a nanophotonic structure built from pairs of closely spaced gold and silver disks that show phase accumulation through material-dependent plasmon resonances. The bimetallic dimers show exotic optical properties, in particular scattering of red and blue light in opposite directions, in spite of being as compact as similar to lambda(3)/100. These spectral and spatial photon-sorting nanodevices can be fabricated on a wafer scale and offer a versatile platform for manipulating optical response through polarization, choice of materials and geometrical parameters, thereby opening possibilities for a wide range of practical applications.



field enhancement


gold nanosandwiches



visible frequencies


Timur Shegai

Chalmers, Teknisk fysik, Bionanofotonik

Si Chen

Chalmers, Teknisk fysik, Bionanofotonik

Vladimir Miljkovic

Chalmers, Teknisk fysik, Bionanofotonik

Gülis Zengin

Chalmers, Teknisk fysik, Bionanofotonik

Peter Johansson

Chalmers, Teknisk fysik, Bionanofotonik

Mikael Käll

Chalmers, Teknisk fysik, Bionanofotonik

Nature Communications

2041-1723 (ISSN)

Vol. 2 1 481


Annan teknik