Beurling-Fourier algebras on compact groups: spectral theory
Artikel i vetenskaplig tidskrift, 2011

For a compact group $G$ we define the Beurling-Fourier algebra $A_\omega(G)$ on $G$ for weights $\omega$ defined on the dual $\what G$ and taking positive values. The classical Fourier algebra corresponds to the case $\omega$ is the constant weight 1. We study the Gelfand spectrum of the algebra realizing it as a subset of the complexification $G_{\mathbb C}$ defined by McKennon and Cartwright and McMullen. In many cases, such as for polynomial weights, the spectrum is simply $G$. We discuss the questions when the algebra $A_\omega(G)$ is symmetric and regular. We also obtain various results concerning spectral synthesis for $A_\omega(G)$.

Beurling-Fourier algebra

group

Författare

Jean Ludwig

Nico Spronk

Lyudmyla Turowska

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

Journal of Functional Analysis

0022-1236 (ISSN) 1096-0783 (eISSN)

Vol. online

Ämneskategorier (SSIF 2011)

Matematisk analys

Mer information

Skapat

2017-10-08