Real time indirect nanoplasmonic in situ spectroscopy of catalyst nanoparticle sintering
Artikel i vetenskaplig tidskrift, 2012

Catalyst deactivation by sintering significantly reduces productivity and energy efficiency of the chemical industry and the effectiveness of environmental cleanup processes. It also hampers the introduction of novel energy conversion devices such as fuel cells. The use of experimental techniques that allow the scrutiny of sintering in situ at high temperatures and pressures in reactive environments is a key to alleviate this situation. Today, such techniques are, however, lacking. Here, we demonstrate by monitoring the sintering kinetics of a Pt/SiO2 model catalyst under such conditions in real time that indirect nanoplasmonic sensing (INPS) has the potential to fill this gap. Specifically, we show an unambiguous correlation between the optical response of the INPS sensor and catalyst sintering. The obtained data are analyzed by means of a kinetic model accounting for the particle-size-dependent activation energy of the Pt detachment. Ostwald ripening is identified as the main sintering mechanism.

plasmon resonance

Ostwald ripening

platinum

catalyst sintering

sintering kinetics

in situ spectroscopy

indirect nanoplasmonic sensing

Författare

Elin Maria Kristina Larsson

Chalmers, Teknisk fysik, Kemisk fysik

Kompetenscentrum katalys

Julien Millet

Chalmers, Teknisk fysik, Kemisk fysik

Stefan Gustafsson

Chalmers, Teknisk fysik, Eva Olsson Group

SuMo Biomaterials

Chalmers, Teknisk fysik, Mikroskopi och mikroanalys

Magnus Skoglundh

Chalmers, Kemi- och bioteknik, Teknisk ytkemi

Kompetenscentrum katalys

Vladimir Zhdanov

Chalmers, Teknisk fysik, Kemisk fysik

Kompetenscentrum katalys

Christoph Langhammer

Chalmers, Teknisk fysik, Kemisk fysik

ACS Catalysis

21555435 (eISSN)

Vol. 2 2 238-245

Drivkrafter

Hållbar utveckling

Styrkeområden

Nanovetenskap och nanoteknik

Transport

Energi

Materialvetenskap

Ämneskategorier

Kemiteknik

Atom- och molekylfysik och optik

Den kondenserade materiens fysik

DOI

10.1021/cs200583u

Mer information

Senast uppdaterat

2020-08-18