Some error estimates for the lumped mass finite element method for a parabolic problem
Artikel i vetenskaplig tidskrift, 2012

We study the spatially semidiscrete lumped mass method for the model homogeneous heat equation with homogeneous Dirichlet boundary conditions. Improving earlier results we show that known optimal order smooth initial data error estimates for the standard Galerkin method carry over to the lumped mass method whereas nonsmooth initial data estimates require special assumptions on the triangulation. We also discuss the application to time discretization by the backward Euler and Crank-Nicolson methods.

equations

parabolic partial differential equations

nonsmooth

Lumped mass method

error estimates

initial data

Författare

P Chatzipantelidis

R. D. Lazarov

Vidar Thomee

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

Mathematics of Computation

0025-5718 (ISSN) 1088-6842 (eISSN)

Vol. 81 1-20

Ämneskategorier

Beräkningsmatematik