Integrability and Conservation Laws for the Nonlinear Evolution Equations of Partially Coherent Waves in Noninstantaneous Kerr Media
Artikel i vetenskaplig tidskrift, 2012

It is shown that the evolution equations describing partially coherent wave propagation in noninstantaneous Kerr media are integrable and have an infinite number of invariants. A recursion relation for generating these invariants is presented, and it is demonstrated how to express them in the coherent density, self-consistent multimode, mutual coherence, and Wigner formalisms.

spatially incoherent-light

Författare

Tobias Hansson

Chalmers, Rymd- och geovetenskap, Icke-linjär elektrodynamik

Mietek Lisak

Chalmers, Rymd- och geovetenskap, Icke-linjär elektrodynamik

Dan Anderson

Chalmers, Rymd- och geovetenskap, Icke-linjär elektrodynamik

Physical Review Letters

0031-9007 (ISSN) 1079-7114 (eISSN)

Vol. 108 6

Ämneskategorier

Fysik

DOI

10.1103/PhysRevLett.108.063901

Mer information

Skapat

2017-10-07