Electro-Thermal Model for Multi-Anode Schottky Diode Multipliers
Artikel i vetenskaplig tidskrift, 2012

We present a self-consistent electro-thermal model for multi-anode Schottky diode multiplier circuits. The thermal model is developed for an -anode multiplier via a thermal resistance matrix approach. The nonlinear temperature responses of the material are taken into consideration by using a linear temperature dependent approximation for the thermal resistance. The electrothermal model is capable of predicting the hot spot temperature, providing useful information for circuit reliability study as well as high power circuit design and optimization. Examples of the circuit analysis incorporating the electro-thermal model for a substrateless- and a membrane-based multiplier circuits, operating up to 200 GHz, are demonstrated. Compared to simulations without thermal model, the simulations with electro-thermal model agree better with the measurement results. For the substrateless multiplier, the error between the simulated and measured peak output power is reduced from ~13% to ~4% by including the thermal effect.

Schottky diodes

high power submillimeter-wave generation

frequency multiplier

thermal analysis

gallium arsenide (GaAs)

Electro-thermal model

self-heating

Författare

Aik-Yean Tang

Chalmers, Mikroteknologi och nanovetenskap, Terahertz- och millimetervågsteknik

Erich Schlecht

California Institute of Technology (Caltech)

Robert Lin

California Institute of Technology (Caltech)

Goutam Chattopadhyay

California Institute of Technology (Caltech)

Choonsup Lee

California Institute of Technology (Caltech)

John Gill

California Institute of Technology (Caltech)

Imran Mehdi

California Institute of Technology (Caltech)

Jan Stake

Chalmers, Mikroteknologi och nanovetenskap, Terahertz- och millimetervågsteknik

IEEE Transactions on Terahertz Science and Technology

2156-342X (ISSN) 21563446 (eISSN)

Vol. 2 3 290-298 6186808

Styrkeområden

Informations- och kommunikationsteknik

Ämneskategorier (SSIF 2011)

Elektroteknik och elektronik

DOI

10.1109/TTHZ.2012.2189913

Mer information

Senast uppdaterat

2025-04-14