Sensitivity of the shortwave radiative effect of dust on particle shape: Comparison of spheres and spheroids
Artikel i vetenskaplig tidskrift, 2012

The sensitivity of direct shortwave radiative effects of dust (DRE) to assumed particle shape is investigated. Radiative transfer simulations are conducted using optical properties of either spheres, mass-equivalent spheroids (mass-conserving case), or (mass-equivalent) spheroids whose number concentration is modified so that they have the same midvisible optical thickness (tau(545 nm)) as spheres (tau-conserving case). The impact of particle shape on DRE is investigated for different dust particle effective radii, optical thickness of the dust cloud, solar zenith angle, and spectral surface albedo (ocean, grass, and desert). It is found that the influence of particle shape on the DRE is strongest over ocean. It also depends very strongly on the shape distribution of spheroids used, to a degree that the results for two distributions of spheroids may deviate more from each other than from those for spheres. Finally, the effects of nonsphericity largely depend on whether the mass- or tau-conserving case is considered. For example, when using a shape distribution of spheroids recommended in a recent study for approximating the single-scattering properties of dust, the DRE at the surface differs at most 5% from that from spherical particles in the mass-conserving case. This stems from compensating nonsphericity effects on optical thickness, asymmetry parameter, and single-scattering albedo. However, in the tau-conserving case, the negative DRE at the surface can be up to 15% weaker for spheroids than spheres.

error source

optical-properties

simulations

retrievals

model particles

climate

mineral aerosol

nonsphericity

light-scattering

computations

Författare

P. Haapanala

Helsingin Yliopisto

P. Raisanen

Finnish Meteorological Institute

Michael Kahnert

Chalmers, Rymd- och geovetenskap, Global miljömätteknik

T. Nousiainen

Helsingin Yliopisto

Journal of Geophysical Research

01480227 (ISSN) 21562202 (eISSN)

Vol. 117 8 D08201

Ämneskategorier

Meteorologi och atmosfärforskning

DOI

10.1029/2011jd017216

Mer information

Senast uppdaterat

2018-05-23